2,119 research outputs found
Optimal approximate fixed point results in locally convex spaces
Let be a convex subset of a locally convex space. We provide optimal
approximate fixed point results for sequentially continuous maps . First we prove that if is totally bounded, then it has an
approximate fixed point net. Next, it is shown that if is bounded but not
totally bounded, then there is a uniformly continuous map
without approximate fixed point nets. We also exhibit an example of a
sequentially continuous map defined on a compact convex set with no approximate
fixed point sequence. In contrast, it is observed that every affine
(not-necessarily continuous) self-mapping a bounded convex subset of a
topological vector space has an approximate fixed point sequence. Moreover, it
is constructed a affine sequentially continuous map from a compact convex set
into itself without fixed points.Comment: 12 page
Modified conjugated gradient method for diagonalising large matrices
We present an iterative method to diagonalise large matrices. The basic idea
is the same as the conjugated gradient (CG) method, i.e, minimizing the
Rayleigh quotient via its gradient and avoiding reintroduce errors to the
directions of previous gradients. Each iteration step is to find lowest
eigenvector of the matrix in a subspace spanned by the current trial vector and
the corresponding gradient of the Rayleigh quotient, as well as some previous
trial vectors. The gradient, together with the previous trail vectors, play a
similar role of the conjugated gradient of the original CG algorithm. Our
numeric tests indicate that this method converges significantly faster than the
original CG method. And the computational cost of one iteration step is about
the same as the original CG method. It is suitably for first principle
calculations.Comment: 6 Pages, 2EPS figures. (To appear in Phys. Rev. E
Polarization phenomena in open charm photoproduction processes
We analyze polarization effects in associative photoproduction of
pseudoscalar () charmed mesons in exclusive processes , , . Circularly polarized photons
induce nonzero polarization of the -hyperon with - and -components
(in the reaction plane) and non vanishing asymmetries and for polarized nucleon target. These polarization observables can be
predicted in model-independent way for exclusive -production processes
in collinear kinematics. The T-even -polarization and asymmetries for
non-collinear kinematics can be calculated in framework of an effective
Lagrangian approach. The depolarization coefficients , characterizing
the dependence of the -polarization on the nucleon polarization are also
calculated.Comment: 36 pages 13 figure
Acceptance conditions in automated negotiation
In every negotiation with a deadline, one of the negotiating parties has to accept an offer to avoid a break off. A break off is usually an undesirable outcome for both parties, therefore it is important that a negotiator employs a proficient mechanism to decide under which conditions to accept. When designing such conditions one is faced with the acceptance dilemma: accepting the current offer may be suboptimal, as better offers may still be presented. On the other hand, accepting too late may prevent an agreement from being reached, resulting in a break off with no gain for either party. Motivated by the challenges of bilateral negotiations between automated agents and by the results and insights of the automated negotiating agents competition (ANAC), we classify and compare state-of-the-art generic acceptance conditions. We focus on decoupled acceptance conditions, i.e. conditions that do not depend on the bidding strategy that is used. We performed extensive experiments to compare the performance of acceptance conditions in combination with a broad range of bidding strategies and negotiation domains. Furthermore we propose new acceptance conditions and we demonstrate that they outperform the other conditions that we study. In particular, it is shown that they outperform the standard acceptance condition of comparing the current offer with the offer the agent is ready to send out. We also provide insight in to why some conditions work better than others and investigate correlations between the properties of the negotiation environment and the efficacy of acceptance condition
Strings in Homogeneous Background Spacetimes
The string equations of motion for some homogeneous (Kantowski-Sachs, Bianchi
I and Bianchi IX) background spacetimes are given, and solved explicitly in
some simple cases. This is motivated by the recent developments in string
cosmology, where it has been shown that, under certain circumstances, such
spacetimes appear as string-vacua.
Both tensile and null strings are considered. Generally, it is much simpler
to solve for the null strings since then we deal with the null geodesic
equations of General Relativity plus some additional constraints.
We consider in detail an ansatz corresponding to circular strings, and we
discuss the possibility of using an elliptic-shape string ansatz in the case of
homogeneous (but anisotropic) backgrounds.Comment: 25 pages, REVTE
Modulated Entanglement Evolution Via Correlated Noises
We study entanglement dynamics in the presence of correlated environmental
noises. Specifically, we investigate the quantum entanglement dynamics of two
spins in the presence of correlated classical white noises, deriving Markov
master equation and obtaining explicit solutions for several interesting
classes of initial states including Bell states and X form density matrices. We
show how entanglement can be enhanced or reduced by the correlation between the
two participating noises.Comment: 9 pages, 4 figures. To be published in Quantum Information
Processing, special issue on Quantum Decoherence and Entanglemen
Optimization of inhomogeneous electron correlation factors in periodic solids
A method is presented for the optimization of one-body and inhomogeneous
two-body terms in correlated electronic wave functions of Jastrow-Slater type.
The most general form of inhomogeneous correlation term which is compatible
with crystal symmetry is used and the energy is minimized with respect to all
parameters using a rapidly convergent iterative approach, based on Monte Carlo
sampling of the energy and fitting energy fluctuations. The energy minimization
is performed exactly within statistical sampling error for the energy
derivatives and the resulting one- and two-body terms of the wave function are
found to be well-determined. The largest calculations performed require the
optimization of over 3000 parameters. The inhomogeneous two-electron
correlation terms are calculated for diamond and rhombohedral graphite. The
optimal terms in diamond are found to be approximately homogeneous and
isotropic over all ranges of electron separation, but exhibit some
inhomogeneity at short- and intermediate-range, whereas those in graphite are
found to be homogeneous at short-range, but inhomogeneous and anisotropic at
intermediate- and long-range electron separation.Comment: 23 pages, 15 figures, 1 table, REVTeX4, submitted to PR
Effects of a nanoscopic filler on the structure and dynamics of a simulated polymer melt and the relationship to ultra-thin films
We perform molecular dynamics simulations of an idealized polymer melt
surrounding a nanoscopic filler particle to probe the effects of a filler on
the local melt structure and dynamics. We show that the glass transition
temperature of the melt can be shifted to either higher or lower
temperatures by appropriately tuning the interactions between polymer and
filler. A gradual change of the polymer dynamics approaching the filler surface
causes the change in the glass transition. We also find that while the bulk
structure of the polymers changes little, the polymers close to the surface
tend to be elongated and flattened, independent of the type of interaction we
study. Consequently, the dynamics appear strongly influenced by the
interactions, while the melt structure is only altered by the geometric
constraints imposed by the presence of the filler. Our findings show a strong
similarity to those obtained for ultra-thin polymer films (thickness nm) suggesting that both ultra-thin films and filled-polymer systems might
be understood in the same context
Generalized Quantum Theory of Recollapsing Homogeneous Cosmologies
A sum-over-histories generalized quantum theory is developed for homogeneous
minisuperspace type A Bianchi cosmological models, focussing on the particular
example of the classically recollapsing Bianchi IX universe. The decoherence
functional for such universes is exhibited. We show how the probabilities of
decoherent sets of alternative, coarse-grained histories of these model
universes can be calculated. We consider in particular the probabilities for
classical evolution defined by a suitable coarse-graining. For a restricted
class of initial conditions and coarse grainings we exhibit the approximate
decoherence of alternative histories in which the universe behaves classically
and those in which it does not. For these situations we show that the
probability is near unity for the universe to recontract classically if it
expands classically. We also determine the relative probabilities of
quasi-classical trajectories for initial states of WKB form, recovering for
such states a precise form of the familiar heuristic "J d\Sigma" rule of
quantum cosmology, as well as a generalization of this rule to generic initial
states.Comment: 41 pages, 4 eps figures, revtex 4. Modest revisions throughout.
Physics unchanged. To appear in Phys. Rev.
The dynamics of quark-gluon plasma and AdS/CFT
In these pedagogical lectures, we present the techniques of the AdS/CFT
correspondence which can be applied to the study of real time dynamics of a
strongly coupled plasma system. These methods are based on solving
gravitational Einstein's equations on the string/gravity side of the AdS/CFT
correspondence. We illustrate these techniques with applications to the
boost-invariant expansion of a plasma system. We emphasize the common
underlying AdS/CFT description both in the large proper time regime where
hydrodynamic dynamics dominates, and in the small proper time regime where the
dynamics is far from equilibrium. These AdS/CFT methods provide a fascinating
arena interrelating General Relativity phenomenae with strongly coupled gauge
theory physics.Comment: 35 pages, 3 figures. Lectures at the 5th Aegean summer school, `From
gravity to thermal gauge theories: the AdS/CFT correspondence'. To appear in
the proceedings in `Lecture Notes in Physics
- …