4 research outputs found

    Surface layering of liquids: The role of surface tension

    Full text link
    Recent measurements show that the free surfaces of liquid metals and alloys are always layered, regardless of composition and surface tension; a result supported by three decades of simulations and theory. Recent theoretical work claims, however, that at low enough temperatures the free surfaces of all liquids should become layered, unless preempted by bulk freezing. Using x-ray reflectivity and diffuse scattering measurements we show that there is no observable surface-induced layering in water at T=298 K, thus highlighting a fundamental difference between dielectric and metallic liquids. The implications of this result for the question in the title are discussed.Comment: 5 pages, 4 figures, to appear in Phys. Rev. B. 69 (2004

    Atomic layering at the liquid silicon surface: a first- principles simulation

    Full text link
    We simulate the liquid silicon surface with first-principles molecular dynamics in a slab geometry. We find that the atom-density profile presents a pronounced layering, similar to those observed in low-temperature liquid metals like Ga and Hg. The depth-dependent pair correlation function shows that the effect originates from directional bonding of Si atoms at the surface, and propagates into the bulk. The layering has no major effects in the electronic and dynamical properties of the system, that are very similar to those of bulk liquid Si. To our knowledge, this is the first study of a liquid surface by first-principles molecular dynamics.Comment: 4 pages, 4 figures, submitted to PR
    corecore