70 research outputs found

    Batch fabrication of micro-coils for MR spectroscopy on silicon

    No full text
    Published versio

    Review of UK microgeneration. Part 1 : policy and behavioural aspects

    Get PDF
    A critical review of the literature relating to government policy and behavioural aspects relevant to the uptake and application of microgeneration in the UK is presented. Given the current policy context aspiring to zero-carbon new homes by 2016 and a variety of minimum standards and financial policy instruments supporting microgeneration in existing dwellings, it appears that this class of technologies could make a significant contribution to UK energy supply and low-carbon buildings in the future. Indeed, achievement of a reduction in greenhouse gas emissions by 80% (the UK government's 2050 target) for the residential sector may entail substantial deployment of microgeneration. Realisation of the large potential market for microgeneration relies on a variety of inter-related factors such as microeconomics, behavioural aspects, the structure of supporting policy instruments and well-informed technology development. This article explores these issues in terms of current and proposed policy instruments in the UK. Behavioural aspects associated with both initial uptake of the technology and after purchase are also considered

    Reproducibility of the lung anatomy under Active Breathing Coordinator control: Dosimetric consequences for scanned proton treatments.

    Get PDF
    Purpose/Objective The treatment of moving targets with scanning proton beams is challenging. By controlling lung volumes, Active Breathing Control (ABC) assists breath-holding for motion mitigation. The delivery of proton treatment fractions often exceeds feasible breath-hold durations, requiring high breath-hold reproducibility. Therefore, we investigated dosimetric consequences of anatomical reproducibility uncertainties in the lung under ABC, evaluating robustness of scanned proton treatments during breath-hold. Material/Methods T1-weighted MRIs of five volunteers were acquired during ABC, simulating image acquisition during four subsequent breath-holds within one treatment fraction. Deformation vector fields obtained from these MRIs were used to deform 95% inspiration phase CTs of 3 randomly selected non-small-cell lung cancer patients (Figure 1). Per patient, an intensity-modulated proton plan was recalculated on the 3 deformed CTs, to assess the dosimetric influence of anatomical breath-hold inconsistencies. Results Dosimetric consequences were negligible for patient 1 and 2 (Figure 1). Patient 3 showed a decreased volume (95.2%) receiving 95% of the prescribed dose for one deformed CT. The volume receiving 105% of the prescribed dose increased from 0.0% to 9.9%. Furthermore, the heart volume receiving 5 Gy varied by 2.3%. Figure 2 shows dose volume histograms for all relevant structures in patient 3. Conclusion Based on the studied patients, our findings suggest that variations in breath-hold have limited effect on the dose distribution for most lung patients. However, for one patient, a significant decrease in target coverage was found for one of the deformed CTs. Therefore, further investigation of dosimetric consequences from intra-fractional breath-hold uncertainties in the lung under ABC is needed

    Joint Registration and Limited-Angle Reconstruction of Digital Breast Tomosynthesis

    Get PDF
    Digital breast tomosynthesis (DBT), an emerging imaging modality, provides a pseudo-3D image of the breast. Algorithms to aid the human observer process these large datasets involve two key tasks: reconstruction and registration. Previous studies separated these steps, solving each task independently. This can be effective if reconstructing using a complete set of data, e.g., in cone beam CT, assuming that only simple deformations exist. However, for ill-posed limited-angle problems such as DBT, estimating the deformation is complicated by the significant artefacts associated with DBT reconstructions, leading to severe inaccuracies in the registration. In this paper, we present an innovative algorithm, which combines reconstruction of a pair of temporal DBT acquisitions with their simultaneous registration. Using various computational phantoms and in vivo DBT simulations, we show that, compared to the conventional sequential method, jointly estimating image intensities and transformation parameters gives superior results with respect to reconstruction fidelity and registration accuracy

    Accuracy of screening women at familial risk of breast cancer without a known gene mutation:individual patient data meta-analysis

    Get PDF
    Introduction Women with a strong family history of breast cancer (BC) and without a known gene mutation have an increased risk of developing BC. We aimed to investigate the accuracy of screening using annual mammography with or without magnetic resonance imaging (MRI) for these women outside the general population screening program. Methods An individual patient data (IPD) meta-analysis was conducted using IPD from six prospective screening trials that had included women at increased risk for BC: only women with a strong familial risk for BC and without a known gene mutation were included in this analysis. A generalised linear mixed model was applied to estimate and compare screening accuracy (sensitivity, specificity and predictive values) for annual mammography with or without MRI. Results There were 2226 women (median age: 41 years, interquartile range 35–47) with 7478 woman-years of follow-up, with a BC rate of 12 (95% confidence interval 9.3–14) in 1000 woman-years. Mammography screening had a sensitivity of 55% (standard error of mean [SE] 7.0) and a specificity of 94% (SE 1.3). Screening with MRI alone had a sensitivity of 89% (SE 4.6) and a specificity of 83% (SE 2.8). Adding MRI to mammography increased sensitivity to 98% (SE 1.8, P &lt; 0.01 compared to mammography alone) but lowered specificity to 79% (SE 2.7, P &lt; 0.01 compared with mammography alone). Conclusion In this population of women with strong familial BC risk but without a known gene mutation, in whom BC incidence was high both before and after age 50, adding MRI to mammography substantially increased screening sensitivity but also decreased its specificity.</p

    Superfluid rotation sensor with helical laser trap

    Full text link
    The macroscopic quantum states of the dilute bosonic ensemble in helical laser trap at the temperatures about 106K10^{-6}\bf {K} are considered in the framework of the Gross-Pitaevskii equation. The helical interference pattern is composed of the two counter propagating Laguerre-Gaussian optical vortices with opposite orbital angular momenta \ell \hbar and this pattern is driven in rotation via angular Doppler effect. Macroscopic observables including linear momentum and angular momentum of the atomic cloud are evaluated explicitly. It is shown that rotation of reference frame is transformed into translational motion of the twisted matter wave. The speed of translation equals the group velocity of twisted wavetrain Vz=Ω/kV_z= \Omega\ell/ k and alternates with a sign of the frame angular velocity Ω\Omega and helical pattern handedness \ell. We address detection of this effect using currently accessible laboratory equipment with emphasis on the difference between quantum and classical fluids.Comment: 8 pages, 3 figures, accepted to publication Journ.Low Temp.Phy
    corecore