5 research outputs found
Ignition conditions for inertial confinement fusion targets with a nuclear spin-polarized DT fuel
The nuclear fusion cross-section is modified when the spins of the interacting nuclei are polarized. In the case of deuterium?tritium it has been theoretically predicted that the nuclear fusion cross-section could be increased by a factor d = 1.5 if all the nuclei were polarized. In inertial confinement fusion this would result in a modification of the required ignition conditions. Using numerical simulations it is found that the required hot-spot temperature and areal density can both be reduced by about 15% for a fully polarized nuclear fuel. Moreover, numerical simulations of a directly driven capsule show that the required laser power and energy to achieve a high gain scale as d-0.6 and d-0.4 respectively, while the maximum achievable energy gain scales as d0.9
Asymptotic Scaling Laws for Imploding Thin Fluid Shells
Scaling laws governing implosions of thin shells in converging flows are established by analyzing the implosion trajectories in the A, M≫ parametric plane, where A is the in-flight aspect ratio, and M is the implosion Mach number. Three asymptotic branches, corresponding to three implosion phases, are identified for each trajectory in the limit of A, M≫1. It is shown that there exists a critical value γcr = 1 + 2/ν (ν= 1, 2 for, respectively, cylindrical and spherical flows) of the adiabatic index gamma, which separates two qualitatively different patterns of the density buildup in the last phase of implosion. The scaling of the stagnation density ρs and pressure Ps with the peak value M0 of the Mach number is obtained. ©2002 The American Physical Societ