2 research outputs found

    Quantum Gravitational Corrections to the Real Klein-Gordon Field in the Presence of a Minimal Length

    Full text link
    The (D+1)-dimensional (β,β′)(\beta,\beta')-two-parameter Lorentz-covariant deformed algebra introduced by Quesne and Tkachuk [C. Quesne and V. M. Tkachuk, J. Phys. A: Math. Gen. \textbf {39}, 10909 (2006).], leads to a nonzero minimal uncertainty in position (minimal length). The Klein-Gordon equation in a (3+1)-dimensional space-time described by Quesne-Tkachuk Lorentz-covariant deformed algebra is studied in the case where β′=2β\beta'=2\beta up to first order over deformation parameter β\beta. It is shown that the modified Klein-Gordon equation which contains fourth-order derivative of the wave function describes two massive particles with different masses. We have shown that physically acceptable mass states can only exist for β<18m2c2\beta<\frac{1}{8m^{2}c^{2}} which leads to an isotropic minimal length in the interval 10−17m<(△Xi)0<10−15m10^{-17}m<(\bigtriangleup X^{i})_{0}<10^{-15}m. Finally, we have shown that the above estimation of minimal length is in good agreement with the results obtained in previous investigations.Comment: 10 pages, no figur
    corecore