9 research outputs found

    Petascale computations for Large-scale Atomic and Molecular collisions

    Full text link
    Petaflop architectures are currently being utilized efficiently to perform large scale computations in Atomic, Molecular and Optical Collisions. We solve the Schroedinger or Dirac equation for the appropriate collision problem using the R-matrix or R-matrix with pseudo-states approach. We briefly outline the parallel methodology used and implemented for the current suite of Breit-Pauli and DARC codes. Various examples are shown of our theoretical results compared with those obtained from Synchrotron Radiation facilities and from Satellite observations. We also indicate future directions and implementation of the R-matrix codes on emerging GPU architectures.Comment: 14 pages, 5 figures, 3 tables, Chapter in: Workshop on Sustained Simulated Performance 2013, Published by Springer, 2014, edited by Michael Resch, Yevgeniya Kovalenko, Eric Focht, Wolfgang Bez and Hiroaki Kobaysah

    PAMOP: Petascale atomic, molecular and optical collision calculations

    No full text
    Petaflop architectures are currently being utilized efficiently to perform large scale computations in Atomic, Molecular and Optical Collisions. We solve the Schr\"odinger or Dirac equation for the appropriate collision problem using the R-matrix or R-matrix with pseudo-states approach. We briefly outline the parallel methodology used and implemented for the current suite of Breit-Pauli and DARC codes. In this report, various examples are shown from our theoretical results compared with experimental results obtained from Synchrotron Radiation facilities where the Cray architecture at HLRS is playing an integral part in our computational projects.Comment: 16 pages, 6 figures, Chapter 4, in High Performance Computing in Science and Engineering 2014, edited by W. E. Nagel, D. B. Kroner, and M. Reich (Springer, New York and Berlin, 2014). http://www.springer.com/mathematics/computational+science+%26+engineering/book/978-3-319-10809-

    Recent advances in psychoneuroimmunology: inflammation in psychiatric disorders

    No full text
    Psychiatric disorders are common and complex and their precise biological underpinnings remain elusive. Multiple epidemiological, molecular, genetic and gene expression studies suggest that immune system dysfunction may contribute to the risk for developing psychiatric disorders including schizophrenia, bipolar disorder, and major depressive disorder. However, the precise mechanisms by which inflammation-related events confer such risk are unclear. In this review, we examine the peripheral and central evidence for inflammation in psychiatric disorders and the potential molecular mechanisms implicated including inhibition of neurogenesis, apoptosis, the HPA-axis, the role of brain-derived neurotrophic factor and the interplay between the glutamatergic, dopaminergic and serotonergic neurotransmitter systems

    Synthesis of Five-Membered Heterocycles Containing Nitrogen Heteroatom Under Ultrasonic Irradiation

    No full text

    Recent advances in psychoneuroimmunology: Inflammation in psychiatric disorders

    No full text
    corecore