415 research outputs found
A harmonic family of dielectric flow solutions with maximal supersymmetry
We construct a new harmonic family: dielectric flow solutions with maximal
supersymmetry in eleven-dimensional supergravity. These solutions are
asymptotically AdS_4 x S^7, while in the infra-red the M2 branes are
dielectrically polarized into M5 branes. These solutions are holographically
dual to vacua of the mass deformed theory on M2 branes. They also provide an
interesting insight on the supergravity solutions sourced by giant gravitons,
allowing one to see how supergravity solves the giant graviton puzzle.Comment: 21 pages, LaTeX. reference adde
Complete callosal agenesis, pontocerebellar hypoplasia, and axonal neuropathy due to AMPD2 loss
Objective: To determine the molecular basis of a severe neurologic disorder in a large consanguineous family with complete agenesis of the corpus callosum (ACC), pontocerebellar hypoplasia (PCH), and peripheral axonal neuropathy.
Methods: Assessment included clinical evaluation, neuroimaging, and nerve conduction studies (NCSs). Linkage analysis used genotypes from 7 family members, and the exome of 3 affected siblings was sequenced. Molecular analyses used Sanger sequencing to perform segregation studies and cohort analysis and Western blot of patient-derived cells.
Results: Affected family members presented with postnatal microcephaly and profound developmental delay, with early death in 3. Neuroimaging, including a fetal MRI at 30 weeks, showed complete ACC and PCH. Clinical evaluation showed areflexia, and NCSs revealed a severe axonal neuropathy in the 2 individuals available for electrophysiologic study. A novel homozygous stopgain mutation in adenosine monophosphate deaminase 2 (AMPD2) was identified within the linkage region on chromosome 1. Molecular analyses confirmed that the mutation segregated with disease and resulted in the loss of AMPD2. Subsequent screening of a cohort of 42 unrelated individuals with related imaging phenotypes did not reveal additional AMPD2 mutations.
Conclusions: We describe a family with a novel stopgain mutation in AMPD2. We expand the phenotype recently described as PCH type 9 to include progressive postnatal microcephaly, complete ACC, and peripheral axonal neuropathy. Screening of additional individuals with related imaging phenotypes failed to identify mutations in AMPD2, suggesting that AMPD2 mutations are not a common cause of combined callosal and pontocerebellar defects
Teleparallel Gravity and Dimensional Reductions of Noncommutative Gauge Theory
We study dimensional reductions of noncommutative electrodynamics on flat
space which lead to gauge theories of gravitation. For a general class of such
reductions, we show that the noncommutative gauge fields naturally yield a
Weitzenbock geometry on spacetime and that the induced diffeomorphism invariant
field theory can be made equivalent to a teleparallel formulation of gravity
which macroscopically describes general relativity. The Planck length is
determined in this setting by the Yang-Mills coupling constant and the
noncommutativity scale. The effective field theory can also contain
higher-curvature and non-local terms which are characteristic of string theory.
Some applications to D-brane dynamics and generalizations to include the
coupling of ordinary Yang-Mills theory to gravity are also described.Comment: 31 pages LaTeX; References adde
The fuzzy S^2 structure of M2-M5 systems in ABJM membrane theories
We analyse the fluctuations of the ground-state/funnel solutions proposed to
describe M2-M5 systems in the level-k mass-deformed/pure Chern-Simons-matter
ABJM theory of multiple membranes. We show that in the large N limit the
fluctuations approach the space of functions on the 2-sphere rather than the
naively expected 3-sphere. This is a novel realisation of the fuzzy 2-sphere in
the context of Matrix Theories, which uses bifundamental instead of adjoint
scalars. Starting from the multiple M2-brane action, a U(1) Yang-Mills theory
on R^{2,1} x S^2 is recovered at large N, which is consistent with a single
D4-brane interpretation in Type IIA string theory. This is as expected at large
k, where the semiclassical analysis is valid. Several aspects of the
fluctuation analysis, the ground-state/funnel solutions and the
mass-deformed/pure ABJM equations can be understood in terms of a discrete
noncommutative realisation of the Hopf fibration. We discuss the implications
for the possibility of finding an M2-brane worldvolume derivation of the
classical S^3 geometry of the M2-M5 system. Using a rewriting of the equations
of the SO(4)-covariant fuzzy 3-sphere construction, we also directly compare
this fuzzy 3-sphere against the ABJM ground-state/funnel solutions and show
them to be different.Comment: 60 pages, Latex; v2: references added; v3: typos corrected and
references adde
Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV
We report the results of a study of color coherence effects in ppbar
collisions based on data collected by the D0 detector during the 1994-1995 run
of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8
TeV. Initial-to-final state color interference effects are studied by examining
particle distribution patterns in events with a W boson and at least one jet.
The data are compared to Monte Carlo simulations with different color coherence
implementations and to an analytic modified-leading-logarithm perturbative
calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events
We present a measurement of the top quark pair ttbar production cross section
in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1}
of data collected by the DO detector at the Fermilab Tevatron Collider. We
select events with one charged lepton (electron or muon), large missing
transverse energy, and at least four jets, and extract the ttbar content of the
sample based on the kinematic characteristics of the events. For a top quark
mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1}
(syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
The PHENIX Experiment at RHIC
The physics emphases of the PHENIX collaboration and the design and current
status of the PHENIX detector are discussed. The plan of the collaboration for
making the most effective use of the available luminosity in the first years of
RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program
available at http://www.rhic.bnl.gov/phenix
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
- …