104 research outputs found

    Induced pseudoscalar form factor of the nucleon at two-loop order in chiral perturbation theory

    Get PDF
    We calculate the imaginary part of the induced pseudoscalar form factor of the nucleon GP(t)G_P(t) in the framework of two-loop heavy baryon chiral perturbation theory. The effect of the calculated three-pion continuum on the pseudoscalar constant gP=(mμ/2M)GP(t=0.877mμ2)g_P = (m_\mu/2M) G_P(t=-0.877m_\mu^2) measurable in ordinary muon capture μpνμn\mu^-p\to \nu_\mu n turns out to be negligibly small. Possible contributions from counterterms at two-loop order are numerically smaller than the uncertainty of the dominant pion-pole term proportional to the pion-nucleon coupling constant gπN=13.2±0.2g_{\pi N}= 13.2\pm 0.2. We conclude that a sufficiently accurate representation of the induced pseudoscalar form factor of the nucleon at low momentum transfers tt is given by the sum of the pion-pole term and the Adler-Dothan-Wolfenstein term: GP(t)=4gπNMfπ/(mπ2t)2gAM2/3G_P(t) = 4g_{\pi N} M f_\pi/ (m_\pi^2 -t)- 2g_A M^2 /3, with =(0.44±0.02) = (0.44 \pm 0.02) fm2^2 the axial mean square radius of the nucleon.Comment: 6 pages, 2 figures, accepted for publication in Physical Review

    Annihilation of NMSSM neutralinos in the Sun and neutrino telescope limits

    Full text link
    We investigate neutralino dark matter in the framework of NMSSM performing a scan over its parameter space and calculating neutralino capture and annihilation rates in the Sun. We discuss the prospects of searches for neutralino dark matter in neutrino experiments depending on neutralino content and its main annihilation channel. We recalculate the upper limits on neutralino-proton elastic cross sections directly from neutrino telescopes upper bounds on annihilation rates in the Sun. This procedure has advantages as compared with corresponding recalcalations from the limits on muon flux, namely, it is independent on details of the experiment and the recalculation coefficients are universal for any kind of WIMP dark matter models. We derive 90% c.l. upper limits on neutralino-proton cross sections from the results of the Baksan Underground Scintillator Telescope.Comment: 28 pages, 16 figures, accepted for publication in JCAP, references adde

    Chiral 2π2\pi-exchange NN-potentials: Two-loop contributions

    Get PDF
    We calculate in heavy baryon chiral perturbation theory the local NN-potentials generated by the two-pion exchange diagrams at two-loop order. We give explicit expressions for the mass-spectra (or imaginary parts) of the corresponding isoscalar and isovector central, spin-spin and tensor NN-amplitudes. We find from two-loop two-pion exchange a sizeable isoscalar central repulsion which amounts to 62.362.3 MeV at r=1.0r=1.0 fm. There is a similarly strong isovector central attraction which however originates mainly from the third order low energy constants dˉj\bar d_j entering the chiral πN\pi N-scattering amplitude. We also evaluate the one-loop 2π2\pi-exchange diagram with two second order chiral ππNN\pi \pi NN-vertices proportional to the low energy constants c1,2,3,4c_{1,2,3,4} as well as the first relativistic 1/M-correction to the 2π2\pi-exchange diagrams with one such vertex. The diagrammatic results presented here are relevant components of the chiral NN-potential at next-to-next-to-next-to-leading order.Comment: 6 pages, 2 figure

    Low Energy Analyzing Powers in Pion-Proton Elastic Scattering

    Full text link
    Analyzing powers of pion-proton elastic scattering have been measured at PSI with the Low Energy Pion Spectrometer LEPS as well as a novel polarized scintillator target. Angular distributions between 40 and 120 deg (c.m.) were taken at 45.2, 51.2, 57.2, 68.5, 77.2, and 87.2 MeV incoming pion kinetic energy for pi+ p scattering, and at 67.3 and 87.2 MeV for pi- p scattering. These new measurements constitute a substantial extension of the polarization data base at low energies. Predictions from phase shift analyses are compared with the experimental results, and deviations are observed at low energies.Comment: 15 pages, 4 figure

    Chiral corrections to kaon-nucleon scattering lengths

    Full text link
    We calculate the threshold T-matrices of kaon-nucleon and antikaon-nucleon scattering to one loop order in SU(3) heavy baryon chiral perturbation theory. To that order the complex-valued isospin-1 KˉN\bar KN threshold T-matrix can be successfully predicted from the isospin-0 and 1 KNKN threshold T-matrices. As expected perturbation theory fails to explain the isospin-0 KˉN\bar KN threshold T-matrix which is completely dominated by the nearby subthreshold Λ(1405)\Lambda^*(1405)-resonance. Cancelations of large terms of second and third chiral order are observed as they seem to be typical for SU(3) baryon chiral perturbation theory calculations. We also give the kaon and eta loop corrections to the πN\pi N scattering lengths and we investigate πΛ\pi\Lambda scattering to one-loop order. The second order s-wave low-energy constants are all of natural size and do not exceed 1 GeV1^{-1} in magnitude.Comment: 8 pages, 2 figures, published in Phys. Rev. C64, 045204 (2001), corrections of numerical prefactors in Eqs.(10,11,12

    The Inert Doublet Model and Inelastic Dark Matter

    Full text link
    The annual modulation observed by DAMA/NaI and DAMA/Libra may be interpreted in terms of elastic or inelastic scattering of dark matter particles. In this paper we confront these two scenarios within the framework of a very simple extension of the Standard Model, the Inert Doublet Model (IDM). In this model the dark matter candidate is a scalar, the lightest component of an extra Higgs doublet. We first revisit the case for the elastic scattering of a light scalar WIMP, M_DM~10 GeV, a scenario which requires that a fraction of events in DAMA are channelled. Second we consider the possibility of inelastic Dark Matter (iDM). This option is technically natural in the IDM, in the sense that the mass splitting between the lightest and next-to-lightest neutral scalars may be protected by a Peccei-Quinn (PQ) symmetry. We show that candidates with a mass M_DM between ~535 GeV and ~50 TeV may reproduce the DAMA data and have a cosmic abundance in agreement with WMAP. This range may be extended to candidates as light as ~50 GeV if we exploit the possibility that the approximate PQ symmetry is effectively conserved and that a primordial asymmetry in the dark sector may survive until freeze-out.Comment: 16 pages, 7 figures. v2: minor changes and discussion on the embedding in SO(10) added. v3: matches the published version in JCA

    Nucleon mass, sigma term and lattice QCD

    Full text link
    We investigate the quark mass dependence of the nucleon mass M_N. An interpolation of this observable, between a selected set of fully dynamical two-flavor lattice QCD data and its physical value, is studied using relativistic baryon chiral perturbation theory up to order p^4. In order to minimize uncertainties due to lattice discretization and finite volume effects our numerical analysis takes into account only simulations performed with lattice spacings a5. We have also restricted ourselves to data with m_pi<600 MeV and m_sea=m_val. A good interpolation function is found already at one-loop level and chiral order p^3. We show that the next-to-leading one-loop corrections are small. From the p^4 numerical analysis we deduce the nucleon mass in the chiral limit, M_0 approx 0.88 GeV, and the pion-nucleon sigma term sigma_N= (49 +/- 3) MeV at the physical value of the pion mass.Comment: 12 pages, 4 figures, revised journal versio

    Spectral functions of isoscalar scalar and isovector electromagnetic form factors of the nucleon at two-loop order

    Get PDF
    We calculate the imaginary parts of the isoscalar scalar and isovector electromagnetic form factors of the nucleon up to two-loop order in chiral perturbation theory. Particular attention is paid on the correct behavior of Im σN(t)\sigma_N(t) and Im GE,MV(t)G_{E,M}^V(t) at the two-pion threshold t0=4mπ2t_0=4 m_\pi^2 in connection with the non-relativistic 1/M-expansion. We recover the well-known strong enhancement near threshold originating from the nearby anomalous singularity at tc=4mπ2mπ4/M2=3.98mπ2t_c = 4m_\pi^2-m_\pi^4/M^2 = 3.98 m_\pi^2. In the case of the scalar spectral function Im σN(t)\sigma_N(t) one finds a significant improvement in comparison to the lowest order one-loop result. Higher order ππ\pi\pi-rescattering effects are however still necessary to close a remaining 20%-gap to the empirical scalar spectral function. The isovector electric and magnetic spectral functions Im GE,MV(t)G_{E,M}^V(t) get additionally enhanced near threshold by the two-pion-loop contributions. After supplementing their two-loop results by a phenomenological ρ\rho-meson exchange term one can reproduce the empirical isovector electric and magnetic spectral functions fairly well.Comment: 10 pages, 6 figures, submitted to Physical Review

    Today's View on Strangeness

    Full text link
    There are several different experimental indications, such as the pion-nucleon sigma term and polarized deep-inelastic scattering, which suggest that the nucleon wave function contains a hidden s bar s component. This is expected in chiral soliton models, which also predicted the existence of new exotic baryons that may recently have been observed. Another hint of hidden strangeness in the nucleon is provided by copious phi production in various N bar N annihilation channels, which may be due to evasions of the Okubo-Zweig-Iizuka rule. One way to probe the possible polarization of hidden s bar s pairs in the nucleon may be via Lambda polarization in deep-inelastic scattering.Comment: 8 pages LaTeX, 10 figures, to appear in the Proceedings of the International Conference on Parity Violation and Hadronic Structure, Grenoble, June 200

    Azimuthal asymmetries at CLAS: Extraction of e^a(x) and prediction of A_{UL}

    Get PDF
    First information on the chirally odd twist-3 proton distribution function e(x) is extracted from the azimuthal asymmetry, A_{LU}, in the electro-production of pions from deeply inelastic scattering of longitudinally polarized electrons off unpolarized protons, which has been recently measured by CLAS collaboration. Furthermore parameter-free predictions are made for azimuthal asymmetries, A_{UL}, from scattering of an unpolarized beam on a polarized proton target for CLAS kinematics.Comment: 9 pages, 5 figures, late
    corecore