10 research outputs found

    Particle Swarm Optimization of Information-Content Weighting of Symbolic Aggregate Approximation

    Full text link
    Bio-inspired optimization algorithms have been gaining more popularity recently. One of the most important of these algorithms is particle swarm optimization (PSO). PSO is based on the collective intelligence of a swam of particles. Each particle explores a part of the search space looking for the optimal position and adjusts its position according to two factors; the first is its own experience and the second is the collective experience of the whole swarm. PSO has been successfully used to solve many optimization problems. In this work we use PSO to improve the performance of a well-known representation method of time series data which is the symbolic aggregate approximation (SAX). As with other time series representation methods, SAX results in loss of information when applied to represent time series. In this paper we use PSO to propose a new minimum distance WMD for SAX to remedy this problem. Unlike the original minimum distance, the new distance sets different weights to different segments of the time series according to their information content. This weighted minimum distance enhances the performance of SAX as we show through experiments using different time series datasets.Comment: The 8th International Conference on Advanced Data Mining and Applications (ADMA 2012

    Towards Normalizing the Edit Distance Using a Genetic Algorithms Based Scheme

    Full text link
    The normalized edit distance is one of the distances derived from the edit distance. It is useful in some applications because it takes into account the lengths of the two strings compared. The normalized edit distance is not defined in terms of edit operations but rather in terms of the edit path. In this paper we propose a new derivative of the edit distance that also takes into consideration the lengths of the two strings, but the new distance is related directly to the edit distance. The particularity of the new distance is that it uses the genetic algorithms to set the values of the parameters it uses. We conduct experiments to test the new distance and we obtain promising results.Comment: The 8th International Conference on Advanced Data Mining and Applications (ADMA 2012

    A Pre-initialization Stage of Population-Based Bio-inspired Metaheuristics for Handling Expensive Optimization Problems

    Get PDF
    Metaheuristics are probabilistic optimization algorithms which are applicable to a wide range of optimization problems. Bio-inspired, also called nature-inspired, optimization algorithms are the most widely-known metaheuristics. The general scheme of bio-inspired algorithms consists in an initial stage of randomly generated solutions which evolve through search operations, for several generations, towards an optimal value of the fitness function of the optimization problem at hand. Such a scenario requires repeated evaluation of the fitness function. While in some applications each evaluation will not take more than a fraction of a second, in others, mainly those encountered in data mining, each evaluation may take up several minutes, hours, or even more. This category of optimization problems is called expensive optimization. Such cases require a certain modification of the above scheme. In this paper we present a new method for handling expensive optimization problems. This method can be applied with different population-based bio-inspired optimization algorithms. Although the proposed method is independent of the application to which it is applied, we experiment it on a data mining task

    When Optimization Is Just an Illusion

    Get PDF
    Bio-inspired optimization algorithms have been successfully applied to solve many problems in engineering, science, and economics. In computer science bio-inspired optimization has different applications in different domains such as software engineering, networks, data mining, and many others. However, some applications may not be appropriate or even correct. In this paper we study this phenomenon through a particular method which applies the genetic algorithms on a time series classification task to set the weights of the similarity measures used in a combination that is used to classify the time series. The weights are supposed to be obtained by applying an optimization process that gives optimal classification accuracy. We show in this work, through examples, discussions, remarks, explanations, and experiments, that the aforementioned method of optimization is not correct and that completely randomly-chosen weights for the similarity measures can give the same classification accuracy

    A synergy of artificial bee colony and genetic algorithms to determine the parameters of the ∑-gram distance

    Get PDF
    In a previous work we presented the Σ-gram distance that computes the similarity between two sequences. This distance includes parameters that we calculated by means of an optimization process using artificial bee colony. In another work we showed how population-based bio-inspired algorithms can be sped up by applying a method that utilizes a pre-initialization stage to yield an optimal initial population. In this paper we use this pre-initialization method on the artificial bee colony algorithm to calculate the parameters of the Σ-gram distance. We show through experiments how this pre-initialization method can substantially speed up the optimization process

    Parameter-Free Extended Edit Distance

    Get PDF
    The edit distance is the most famous distance to compute the similarity between two strings of characters. The main drawback of the edit distance is that it is based on local procedures which reflect only a local view of similarity. To remedy this problem we presented in a previous work the extended edit distance, which adds a global view of similarity between two strings. However, the extended edit distance includes a parameter whose computation requires a long training time. In this paper we present a new extension of the edit distance which is parameter-free. We compare the performance of the new extension to that of the extended edit distance and we show how they both perform very similarly

    Peranan ilmuwan muslim dalam negara pancasila

    No full text
    Buku ini berisi tiga buah ceramah yang disampaikan oleh Menteri Agama R.I Munnawir Sjadzali. Isi ketiga pidato itu saling berkaitan dan bahkan berada dalam satu tema, yaitu bagaimana peranan ulama dan cendekiawan muslim dalam menghadapi berbagai masalah kemasyarakatan dalam negara Pancasila, termasuk penjelasan konsepsional mengenai Pancasila itu sendiri dipandang dari segi ajaran Islam.ii, 23 hlm.; 21 c
    corecore