8 research outputs found
Onset voltage shift due to non-zero Landau ground state level in coherent magnetotransport
Coherent electron transport in double-barrier heterostructures with parallel
electric and magnetic fields is analyzed theoretically and with the aid of a
quantum simulator accounting for 3-dimensional transport effects. The
onset-voltage shift induced by the magnetic field in resonant tunneling diodes,
which was previously attributed to the cyclotron frequency inside the
well is found to arise from an upward shift of the non-zero ground (lowest)
Landau state energy in the entire quantum region where coherent transport takes
place. The spatial dependence of the cyclotron frequency is accounted for and
verified to have a negligible impact on resonant tunneling for the device and
magnetic field strength considered. A correction term for the onset-voltage
shift arising from the magnetic field dependence of the chemical potential is
also derived. The Landau ground state with its nonvanishing finite harmonic
oscillator energy is verified however to be the principal
contributor to the onset voltage shift at low temperatures.Comment: 13 pages, and 3 figures. Accepted for publication in Phys. Rev.
Measurements of Entrainment and Mixing in Turbulent Jets
An experimental investigation of entrainment and mixing in the self-similar far field of an axisymmetric free turbulent jet in water is presented. Length and time scales for the flame length fluctuations of reacting jets are shown to be approximately equal to the local characteristic large scale length and time of the flow. It is also shown that instantaneous radial profiles of concentration across the jet do not resemble the mean concentration profile, indicating that the mean profile is a poor representation of the mixed fluid states within the jet. These instantaneous profiles also show that unmixed ambient fluid is transported throughout the entire extent of the jet, and that the mixed fluid composition within the jet can be fairly uniform in regions extending across a large part of the local jet diameter. Lastly, the amount of unmixed ambient fluid on the jet centerline is found to vary roughly periodically with a period approximately equal to the local characteristic large scale time of the flow. These results suggest that large scale transport mechanisms, displaying a characteristic organization, play an important role in entrainment and mixing in the far filed of turbulent jets
Analysis of non-symmetrical flapping airfoils
10.1007/s10409-009-0259-1Acta Mechanica Sinica/Lixue Xuebao254433-450AMSN
2D-measurement technique for simultaneous quantitative determination of mixing ratio and velocity field in microfluidic applications
Two-dimensional Molecular-Tagging-Velocimetry (2D-MTV) has been used to investigate velocity fields of liquid flow in a micro mixer. Optical tagging was realized by using caged dye. For the first time patterns were generated by structured laser illumination using optical masks. This allows the generation of nearly any imaginable pattern. The flow induced deformation of the optically written pattern is tracked by imaging of laser induced fluorescence. Quantitative analysis of raw image series is carried out by novel “optical flow ” based techniques. A comparison to the standard technique of µPIV has also been conducted. Additionally Planar Spontaneous Raman Scattering (PSRS) was applied in order to determine concentration fields for mixtures of ethanol and water