8 research outputs found

    Onset voltage shift due to non-zero Landau ground state level in coherent magnetotransport

    Full text link
    Coherent electron transport in double-barrier heterostructures with parallel electric and magnetic fields is analyzed theoretically and with the aid of a quantum simulator accounting for 3-dimensional transport effects. The onset-voltage shift induced by the magnetic field in resonant tunneling diodes, which was previously attributed to the cyclotron frequency wcw_c inside the well is found to arise from an upward shift of the non-zero ground (lowest) Landau state energy in the entire quantum region where coherent transport takes place. The spatial dependence of the cyclotron frequency is accounted for and verified to have a negligible impact on resonant tunneling for the device and magnetic field strength considered. A correction term for the onset-voltage shift arising from the magnetic field dependence of the chemical potential is also derived. The Landau ground state with its nonvanishing finite harmonic oscillator energy wc/2 \hbar w_c /2 is verified however to be the principal contributor to the onset voltage shift at low temperatures.Comment: 13 pages, and 3 figures. Accepted for publication in Phys. Rev.

    Measurements of Entrainment and Mixing in Turbulent Jets

    No full text
    An experimental investigation of entrainment and mixing in the self-similar far field of an axisymmetric free turbulent jet in water is presented. Length and time scales for the flame length fluctuations of reacting jets are shown to be approximately equal to the local characteristic large scale length and time of the flow. It is also shown that instantaneous radial profiles of concentration across the jet do not resemble the mean concentration profile, indicating that the mean profile is a poor representation of the mixed fluid states within the jet. These instantaneous profiles also show that unmixed ambient fluid is transported throughout the entire extent of the jet, and that the mixed fluid composition within the jet can be fairly uniform in regions extending across a large part of the local jet diameter. Lastly, the amount of unmixed ambient fluid on the jet centerline is found to vary roughly periodically with a period approximately equal to the local characteristic large scale time of the flow. These results suggest that large scale transport mechanisms, displaying a characteristic organization, play an important role in entrainment and mixing in the far filed of turbulent jets

    Analysis of non-symmetrical flapping airfoils

    No full text
    10.1007/s10409-009-0259-1Acta Mechanica Sinica/Lixue Xuebao254433-450AMSN

    2D-measurement technique for simultaneous quantitative determination of mixing ratio and velocity field in microfluidic applications

    No full text
    Two-dimensional Molecular-Tagging-Velocimetry (2D-MTV) has been used to investigate velocity fields of liquid flow in a micro mixer. Optical tagging was realized by using caged dye. For the first time patterns were generated by structured laser illumination using optical masks. This allows the generation of nearly any imaginable pattern. The flow induced deformation of the optically written pattern is tracked by imaging of laser induced fluorescence. Quantitative analysis of raw image series is carried out by novel “optical flow ” based techniques. A comparison to the standard technique of µPIV has also been conducted. Additionally Planar Spontaneous Raman Scattering (PSRS) was applied in order to determine concentration fields for mixtures of ethanol and water
    corecore