4 research outputs found

    Sub-chronic exposure to fipronil induced oxidative stress, biochemical and histopathological changes in the liver and kidney of male albino rats

    Get PDF
    Fipronil (FPN) is a broad-spectrum N-phenylpyrazole insecticide and has been used in agriculture and public health since the mid-1990s. The present study was designed to investigate the adverse effects of sub-chronic exposure to the FPN on the liver and kidney of male rats at three concentrations 0.1, 1 and 10 mg/L in drinking water for 45 days. Serum aspartate aminotransferases (AST), alanine aminotransferases (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) activity and levels of uric acid, creatinine and total protein were significantly increased in FPN-treated rats. Oxidative stress biomarkers such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reduced (GSH) were significantly decreased, while lipid peroxidation (LPO) was significantly increased in treating rats in a concentration dependent manner. FPN caused histopathological alterations in liver and kidney of male rats. From our results, it can be concluded that FPN induced lipid peroxidation, oxidative stress, liver, and kidney injury in rats. These pathophysiological changes in liver and kidney tissues could be due to the toxic effect of FPN that associated with a generation of free radicals

    Rosemary essential oil nanoemulsion, formulation, characterization and acaricidal activity against the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae)

    No full text
    The adverse effects of synthetic acaricides on humans, animals, non-target organisms and the ecosystem are serious problems. Thus, there is a new trend to use nanotechnology for developing new, natural, bio and safe acaricides for mite control in green-pest management. This is the first work for preparing a nanoformulation of rosemary essential oil (EO) and evaluating its effect against the two-spotted spider mite Tetranychus urticae Koch. GC/MS analysis of rosemary EO showed that 1,8 cineole (31.45%), borneol (11.07%), α-pinene (10.91%), D-limonene (9.19%), L-linalool (8.86%), D-camphor (7.32%), γ-terpinene (3.92%), linalyl acetate (3.37%), α-terpineol (3.32%), and p-cymene (1.82%) were the major components. After 6 min of sonication, a nanoemulsion of rosemary EO was formulated with a droplet size of 139.9 nm. The balance between oil (lyophilic) and surfactant (hydrophilic) was correlated with the droplet size and the stability of the nanoemulsion. Spray application of rosemary nanoemulsion showed high acaricidal activity against immature and adult two-spotted spider mites T. urticae with LC50 723.71 and 865.68 μg · ml−1 and the toxicity increased by 54.15 and 52.69% for immature and adult mites, respectively. There were no toxic effects or mortality of rats treated with rosemary nanoemulsion. High acaricidal activity, stability, and safety of rosemary nanoemulsion make this nanoformulation a possible green and nano-acaricidal product. Further studies under field conditions are necessary to study the acaricidal efficiency of rosemary nanoemulsion against two-spotted spider mites and the toxic effect on predacious mites
    corecore