1,130 research outputs found
Short crack initiation and growth at 600 °C in notched specimens of Inconel718
The natural initiation and growth of short cracks in Inconel®718 U-notch specimens has been studied at 600 °C in air. U notches were introduced through broaching, and hardness traces and optical microscopy on cross-sections through the U notch broaching showed that the broaching process had introduced a deformed, work hardened layer. Fatigue tests were conducted under load control using a 1-1-1-1 trapezoidal waveform, on specimens with as-broached and polished U-notches. Multi-site crack initiation occurred in the notch root. Many of the cracks initiated at bulge-like features formed by volume expansion of oxidising (Nb,Ti)C particles. In unstressed samples, oxidation of (Nb,Ti)C particles occurred readily, producing characteristic surface eruptions. Scanning electron microscopy on metallographic sections revealed some sub-surface (Nb,Ti)C oxidation and localised matrix deformation around oxidised particles. A mechanism for crack initiation by carbide expansion during oxidation is discussed. Surface short crack growth rates in the notch root of polished specimens were measured using an acetate replica technique. Observed short-crack growth rates were approximately constant across a wide range of crack lengths. However, there was a transition to rapid, accelerating crack growth once cracks reached several hundred micrometers in length. This rapid propagation in the latter stages of the fatigue life was assisted by crack coalescence. Polishing the U-notch to remove broaching marks resulted in a pronounced increase in fatigue life
A comparison of high temperature fatigue crack propagation in various sub-solvus heat treated turbine disc alloys
The microstructure and fatigue performance of three sub-solvus heat treated nickel based disc superalloys for turbine disc applications are reported. The alloy variants studied are RR1000, N18 and Udimet 720 Low Interstitial (U720Li), with the latter tested both in a standard and large grain variant (LG). Their microstructures are examined in terms of grain and gamma prime size. Fatigue crack growth (FCG) rates for all materials at 650ºC show that RR1000 provides the best performance, followed by U720Li-LG, N18 and U720Li. In general, the failure modes become increasingly intergranular with increasing ?K. Some of the variations in FCG rate between the alloys are due to reduction in grain boundary oxidation processes with increased grain size, but more subtle interplays between grain boundary character, alloy composition and slip character are also importan
Complexity of diatom response to Lateglacial and Holocene climate and environmental change in ancient, deep, and oligotrophic Lake Ohrid (Macedonia/Albania)
Lake Ohrid (Macedonia/Albania) is a rare example of a deep, ancient Mediterranean lake and is a key site for palaeoclimate research in the northeastern Mediterranean region. This study conducts the first high-resolution diatom analysis during the Lateglacial and Holocene in Lake Ohrid. It demonstrates a complex diatom response to temperature change, with a direct response to temperature-induced productivity and an indirect response to temperature-related stratification/mixing regime and epilimnetic nutrient availability. During the Lateglacial (ca. 12 300–11 800 cal yr BP), the low-diversity dominance of hypolimnetic Cyclotella fottii indicates low temperature-dependent lake productivity. During the earliest Holocene (ca. 11 800–10 600 cal yr BP), although the slight increase in small, epilimnetic C. minuscula suggests climate warming and enhanced thermal stratification, diatom concentration remains very low as during the Lateglacial, indicating that temperature increase was muted. The early Holocene (ca. 10 600–8200 cal yr BP) marked a sustained increase in epilimnetic taxa, with mesotrophic C. ocellata indicating high temperature-induced lake productivity between ca. 10 600–10 200 cal yr BP and between ca. 9500–8200 cal yr BP, and with C. minuscula in response to low nutrient availability in the epilimnion between ca. 10 200–9500 cal yr BP. During the mid Holocene (ca. 8200–2600 cal yr BP), when sedimentological and geochemical proxies provide evidence for high temperature, anomalously low C. ocellata abundance is probably a response to epilimnetic nutrient limitation, almost mimicking the Lateglacial flora apart from mesotrophic Stephanodiscus transylvanicus indicative of high temperature-induced productivity in the hypolimnion. During the late Holocene (ca. 2600–0 cal yr BP), high abundance and fluctuating composition of epilimnetic taxa is largely a response to enhanced anthropogenic nutrient input. In this deep, oligotrophic lake, this study demonstrates the strong influence of lake physical and chemical processes in mediating the complex response of diatoms to climate change with particular respect to temperature
Complexity of diatom response to Lateglacial and Holocene climate and environmental change in ancient, deep and oligotrophic Lake Ohrid (Macedonia and Albania)
Lake Ohrid (Macedonia and Albania) is a rare example of a deep, ancient Mediterranean lake and is a key site for palaeoclimate research in the northeastern Mediterranean region. This study conducts the analysis of diatoms as a proxy for Lateglacial and Holocene climate and environmental change in Lake Ohrid at a higher resolution than in previous studies. While Lake Ohrid has the potential to be sensitive to water temperature change, the data demonstrate a highly complex diatom response, probably comprising a direct response to temperature-induced lake productivity in some phases and an indirect response to temperature-related lake stratification or mixing and epilimnetic nutrient availability in others. The data also demonstrate the possible influence of physical limnological (e.g. the influence of wind stress on stratification or mixing) and chemical processes (e.g. the influence of catchment dynamics on nutrient input) in mediating the complex response of diatoms. During the Lateglacial (ca. 12 300–11 800 cal yr BP), the low-diversity dominance of hypolimnetic Cyclotella fottii indicates low lake productivity, linked to low water temperature. Although the subsequent slight increase in small, epilimnetic C. minuscula during the earliest Holocene (ca. 11 800–10 600 cal yr BP) suggests climate warming and enhanced stratification, diatom concentration remains as low as during the Lateglacial, suggesting that water temperature increase was muted across this major transition. The early Holocene (ca. 10 600–8200 cal yr BP) is characterised by a sustained increase in epilimnetic taxa, with mesotrophic C. ocellata indicating high water-temperature-induced productivity between ca. 10 600–10 200 cal yr BP and between ca. 9500–8200 cal yr BP and with C. minuscula in response to low nutrient availability in the epilimnion between ca. 10 200–9500 cal yr BP. During the middle Holocene (ca. 8200–2600 cal yr BP), when sedimentological and geochemical proxies provide evidence for maximum Holocene water temperature, anomalously low C. ocellata abundance is probably a response to epilimnetic nutrient limitation, almost mimicking the Lateglacial flora apart from the occurrence of mesotrophic Stephanodiscus transylvanicus in the hypolimnion. During the late Holocene (ca. 2600 cal yr BP–present), high abundance and fluctuating composition of epilimnetic taxa are probably a response more to enhanced anthropogenic nutrient input, particularly nitrogen enrichment, than to climate. Overall, the data indicate that previous assumptions concerning the linearity of diatom response in this deep, ancient lake are invalid, and multi-proxy analysis is essential to improve understanding of palaeolimnological dynamics in future research on the long, Quaternary sequence
Recurrence for discrete time unitary evolutions
We consider quantum dynamical systems specified by a unitary operator U and
an initial state vector \phi. In each step the unitary is followed by a
projective measurement checking whether the system has returned to the initial
state. We call the system recurrent if this eventually happens with probability
one. We show that recurrence is equivalent to the absence of an absolutely
continuous part from the spectral measure of U with respect to \phi. We also
show that in the recurrent case the expected first return time is an integer or
infinite, for which we give a topological interpretation. A key role in our
theory is played by the first arrival amplitudes, which turn out to be the
(complex conjugated) Taylor coefficients of the Schur function of the spectral
measure. On the one hand, this provides a direct dynamical interpretation of
these coefficients; on the other hand it links our definition of first return
times to a large body of mathematical literature.Comment: 27 pages, 5 figures, typos correcte
Transient expression in nicotiana benthamiana leaves for triterpene production at a preparative scale
The triterpenes are one of the largest and most structurally diverse families of plant natural products. Many triterpene derivatives have been shown to possess medicinally relevant biological activity. However, thus far this potential has not translated into a plethora of triterpene-derived drugs in the clinic. This is arguably (at least partially) a consequence of limited practical synthetic access to this class of compound, a problem that can stifle the exploration of structure-activity relationships and development of lead candidates by traditional medicinal chemistry workflows. Despite their immense diversity, triterpenes are all derived from a single linear precursor, 2,3-oxidosqualene. Transient heterologous expression of biosynthetic enzymes in N. benthamiana can divert endogenous supplies of 2,3-oxidosqualene towards the production of new high-value triterpene products that are not naturally produced by this host. Agro-infiltration is an efficient and simple means of achieving transient expression in N. benthamiana. The process involves infiltration of plant leaves with a suspension of Agrobacterium tumefaciens carrying the expression construct(s) of interest. Co-infiltration of an additional A. tumefaciens strain carrying an expression construct encoding an enzyme that boosts precursor supply significantly increases yields. After a period of five days, the infiltrated leaf material can be harvested and processed to extract and isolate the resulting triterpene product(s). This is a process that is linearly and reliably scalable, simply by increasing the number of plants used in the experiment. Herein is described a protocol for rapid preparative-scale production of triterpenes utilizing this plant-based platform. The protocol utilizes an easily replicable vacuum infiltration apparatus, which allows the simultaneous infiltration of up to four plants, enabling batch-wise infiltration of hundreds of plants in a short period of time
Variational theory for a single polyelectrolyte chain revisited
We reconsider the electrostatic contribution to the persistence length,
, of a single, infinitely long charged polymer in the presence of
screening. A Gaussian variational method is employed, taking as the
only variational parameter. For weakly charged and flexible chains, crumpling
occurs at small length scales because conformational fluctuations overcome
electrostatic repulsion. The electrostatic persistence length depends on the
square of the screening length, , as first argued by
Khokhlov and Khachaturian by applying the Odijk-Skolnick-Fixman (OSF) theory to
a string of crumpled blobs. We compare our approach to previous theoretical
works (including variational formulations) and show that the result
found by several authors comes from the improper use of
a cutoff at small length scales. For highly charged and stiff chains, crumpling
does not occur; here we recover the OSF result and validate the perturbative
calculation for slightly bent rods.Comment: 11 pages, 6 figure
Contact rates with nesting birds before and after invasive snake removal: estimating the effects of trap-based control
Invasive predators are responsible for almost 60% of all vertebrate extinctions worldwide with the most vulnerable faunas occurring on islands. The brown treesnake (Boiga irregularis) is a notorious invasive predator that caused the extirpation or extinction of most native forest birds on Guam. The success of avian reintroduction efforts on Guam will depend on whether snake-control techniques sufficiently reduce contact rates between brown treesnakes and reintroduced birds. Mouse-lure traps can successfully reduce brown treesnake populations at local scales. Over a 22-week period both with and without active snake removal, we evaluated snake-trap contact rates for mouse- and bird-lure traps. Bird-lure traps served as a proxy for reintroduced nesting birds. Overall, mouse-lure traps caught more snakes per trap night than did bird-lure traps. However, cameras revealed that bird-lure traps had a snake contact rate almost 15 times greater than the number of successfully captured snakes. Snakes that entered bird-lure traps tended to be larger and in better body condition and were mostly captured in bird-lure traps, despite numerous adjacent mouse-lure traps. Traps placed along grid edges caught more snakes than interior traps, suggesting continuous immigration into the trapping grid within which bird-lure traps were located. Contact between snakes and bird-lure traps was equivalent before and after snake removal, suggesting mouse-lure traps did not adequately reduce the density of snakes that posed a risk to birds, at least at the timescale of this project. This study provides evidence that some snakes exhibit prey selectivity for live birds over live mouse lures. Reliance on a single control tool and lure may be inadequate for support of avian reintroductions and could lead to unintended harvest-driven trait changes of this invasive predator
Contact rates with nesting birds before and after invasive snake removal: estimating the effects of trap-based control
Invasive predators are responsible for almost 60% of all vertebrate extinctions worldwide with the most vulnerable faunas occurring on islands. The brown treesnake (Boiga irregularis) is a notorious invasive predator that caused the extirpation or extinction of most native forest birds on Guam. The success of avian reintroduction efforts on Guam will depend on whether snake-control techniques sufficiently reduce contact rates between brown treesnakes and reintroduced birds. Mouse-lure traps can successfully reduce brown treesnake populations at local scales. Over a 22-week period both with and without active snake removal, we evaluated snake-trap contact rates for mouse- and bird-lure traps. Bird-lure traps served as a proxy for reintroduced nesting birds. Overall, mouse-lure traps caught more snakes per trap night than did bird-lure traps. However, cameras revealed that bird-lure traps had a snake contact rate almost 15 times greater than the number of successfully captured snakes. Snakes that entered bird-lure traps tended to be larger and in better body condition and were mostly captured in bird-lure traps, despite numerous adjacent mouse-lure traps. Traps placed along grid edges caught more snakes than interior traps, suggesting continuous immigration into the trapping grid within which bird-lure traps were located. Contact between snakes and bird-lure traps was equivalent before and after snake removal, suggesting mouse-lure traps did not adequately reduce the density of snakes that posed a risk to birds, at least at the timescale of this project. This study provides evidence that some snakes exhibit prey selectivity for live birds over live mouse lures. Reliance on a single control tool and lure may be inadequate for support of avian reintroductions and could lead to unintended harvest-driven trait changes of this invasive predator
- …