28 research outputs found

    On piecewise trivial Hopf—Galois extensions

    Get PDF
    We discuss a noncommutative generalization of compact principal bundles that can be trivialized relative to the finite covering by closed sets. In this setting we present bundle reconstruction and reduction

    Toeplitz operators on symplectic manifolds

    Full text link
    We study the Berezin-Toeplitz quantization on symplectic manifolds making use of the full off-diagonal asymptotic expansion of the Bergman kernel. We give also a characterization of Toeplitz operators in terms of their asymptotic expansion. The semi-classical limit properties of the Berezin-Toeplitz quantization for non-compact manifolds and orbifolds are also established.Comment: 40 page

    On the algebraic index for riemannian \'etale groupoids

    Get PDF
    In this paper we construct an explicit quasi-isomorphism to study the cyclic cohomology of a deformation quantization over a riemannian \'etale groupoid. Such a quasi-isomorphism allows us to propose a general algebraic index problem for riemannian \'etale groupoids. We discuss solutions to that index problem when the groupoid is proper or defined by a constant Dirac structure on a 3-dim torus.Comment: 19 page

    Strong Connections on Quantum Principal Bundles

    Full text link
    A gauge invariant notion of a strong connection is presented and characterized. It is then used to justify the way in which a global curvature form is defined. Strong connections are interpreted as those that are induced from the base space of a quantum bundle. Examples of both strong and non-strong connections are provided. In particular, such connections are constructed on a quantum deformation of the fibration S2−>RP2S^2 -> RP^2. A certain class of strong Uq(2)U_q(2)-connections on a trivial quantum principal bundle is shown to be equivalent to the class of connections on a free module that are compatible with the q-dependent hermitian metric. A particular form of the Yang-Mills action on a trivial U\sb q(2)-bundle is investigated. It is proved to coincide with the Yang-Mills action constructed by A.Connes and M.Rieffel. Furthermore, it is shown that the moduli space of critical points of this action functional is independent of q.Comment: AMS-LaTeX, 40 pages, major revision including examples of connections over a quantum real projective spac

    The Grauert–Grothendieck complex on differentiable spaces and a sheaf complex of Brylinski

    No full text
    We use the Grauert–Grothendieck complex on differentiable spaces to study basic relative forms on the inertia space of a compact Lie group action on a manifold. We prove that the sheaf complex of basic relative forms on the inertia space is a fine resolution of Bryliski’s sheaf of functions on the inertia space

    The localized longitudinal index theorem for Lie groupoids and the van Est map

    No full text
    We define the "localized index" of longitudinal elliptic operators on Lie groupoids associated with Lie algebroid cohomology classes. We derive a topological expression for these numbers using the algebraic index theorem for Poisson manifolds on the dual of the Lie algebroid. Underlying the definition and computation of the localized index, is an action of the Hopf algebroid of jets around the unit space, and the characteristic map it induces on Lie algebroid cohomology. This map can be globalized to differentiable groupoid cohomology, giving a definition of the "global index", that can be computed by localization. This correspondence between the "global" and "localized" index is given by the van Est map for Lie groupoids
    corecore