54 research outputs found

    Detection of relic gravitational waves in the CMB: Prospects for CMBPol mission

    Full text link
    Detection of relic gravitational waves, through their imprint in the cosmic microwave background radiation, is one of the most important tasks for the planned CMBPol mission. In the simplest viable theoretical models the gravitational wave background is characterized by two parameters, the tensor-to-scalar ratio rr and the tensor spectral index ntn_t. In this paper, we analyze the potential joint constraints on these two parameters, rr and ntn_t, using the potential observations of the CMBPol mission, which is expected to detect the relic gravitational waves if r0.001r\gtrsim0.001. The influence of the contaminations, including cosmic weak lensing, various foreground emissions, and systematical errors, is discussed.Comment: 26 pages, 19 figures, 4 tables; JCAP in pres

    Polarizing Bubble Collisions

    Full text link
    We predict the polarization of cosmic microwave background (CMB) photons that results from a cosmic bubble collision. The polarization is purely E-mode, symmetric around the axis pointing towards the collision bubble, and has several salient features in its radial dependence that can help distinguish it from a more conventional explanation for unusually cold or hot features in the CMB sky. The anomalous "cold spot" detected by the Wilkinson Microwave Anisotropy Probe (WMAP) satellite is a candidate for a feature produced by such a collision, and the Planck satellite and other proposed surveys will measure the polarization on it in the near future. The detection of such a collision would provide compelling evidence for the string theory landscape.Comment: Published version. 15 pages, 8 figure

    Substructures in lens galaxies: PG1115+080 and B1555+375, two fold configurations

    Full text link
    We study the anomalous flux ratio which is observed in some four-image lens systems, where the source lies close to a fold caustic. In this case two of the images are close to the critical curve and their flux ratio should be equal to unity, instead in several cases the observed value differs significantly. The most plausible solution is to invoke the presence of substructures, as for instance predicted by the Cold Dark Matter scenario, located near the two images. In particular, we analyze the two fold lens systems PG1115+080 and B1555+375, for which there are not yet satisfactory models which explain the observed anomalous flux ratios. We add to a smooth lens model, which reproduces well the positions of the images but not the anomalous fluxes, one or two substructures described as singular isothermal spheres. For PG1115+080 we consider a smooth model with the influence of the group of galaxies described by a SIS and a substructure with mass 105M\sim 10^{5} M_{\odot} as well as a smooth model with an external shear and one substructure with mass 108M\sim 10^{8} M_{\odot} . For B1555+375 either a strong external shear or two substructures with mass 107M\sim 10^{7} M_{\odot} reproduce the data quite well.Comment: 26 pages, updated bibliography, Accepted for publication in Astrophysics & Space Scienc

    Mechanical loss in tantala/silica dielectric mirror coatings

    No full text
    Current interferometric gravitational wave detectors use test masses with mirror coatings formed from multiple layers of dielectric materials, most commonly alternating layers Of SiO2 (silica) and Ta2O5 (tantala). However, mechanical loss in the Ta2O5/SiO2 coatings may limit the design sensitivity for advanced detectors. We have investigated sources of mechanical loss in the Ta2O5/SiO2 coatings, including loss associated with the coating-substrate interface, with the coating-layer interfaces and with the coating materials. Our results indicate that the loss is associated with the coating materials and that the loss of Ta2O5 is substantially larger than that Of SiO2
    corecore