36 research outputs found

    lncRNA-Induced Spread of Polycomb Controlled by Genome Architecture, RNA Abundance, and CpG Island DNA

    Get PDF
    Long noncoding RNAs (lncRNAs) cause Polycomb repressive complexes (PRCs) to spread over broad regions of the mammalian genome. We report that in mouse trophoblast stem cells, the Airn and Kcnq1ot1 lncRNAs induce PRC-dependent chromatin modifications over multi-megabase domains. Throughout the Airn-targeted domain, the extent of PRC-dependent modification correlated with intra-nuclear distance to the Airn locus, preexisting genome architecture, and the abundance of Airn itself. Specific CpG islands (CGIs) displayed characteristics indicating that they nucleate the spread of PRCs upon exposure to Airn. Chromatin environments surrounding Xist, Airn, and Kcnq1ot1 suggest common mechanisms of PRC engagement and spreading. Our data indicate that lncRNA potency can be tightly linked to lncRNA abundance and that within lncRNA-targeted domains, PRCs are recruited to CGIs via lncRNA-independent mechanisms. We propose that CGIs that autonomously recruit PRCs interact with lncRNAs and their associated proteins through three-dimensional space to nucleate the spread of PRCs in lncRNA-targeted domains. Schertzer et al. studied relationships between long noncoding RNAs (lncRNAs) and Polycomb repressive complexes (PRCs) in mouse trophoblast stem cells. They found that genome architecture, lncRNA abundance, and CpG island DNA each play important roles in dictating the intensity of PRC-induced chromatin modifications within lncRNA target domains

    Content and performance of the MiniMUGA genotyping array: A new tool to improve rigor and reproducibility in mouse research

    Get PDF
    The laboratory mouse is the most widely used animal model for biomedical research, due in part to its well-annotated genome, wealth of genetic resources, and the ability to precisely manipulate its genome. Despite the importance of genetics for mouse research, genetic quality control (QC) is not standardized, in part due to the lack of cost-effective, informative, and robust platforms. Genotyping arrays are standard tools for mouse research and remain an attractive alternative even in the era of high-throughput whole-genome sequencing. Here, we describe the content and performance of a new iteration of the Mouse Universal Genotyping Array (MUGA), MiniMUGA, an array-based genetic QC platform with over 11,000 probes. In addition to robust discrimination between most classical and wild-derived laboratory strains, MiniMUGA was designed to contain features not available in other platforms: (1) chromosomal sex determination, (2) discrimination between substrains from multiple commercial vendors, (3) diagnostic SNPs for popular laboratory strains, (4) detection of constructs used in genetically engineered mice, and (5) an easy-to-interpret report summarizing these results. In-depth annotation of all probes should facilitate custom analyses by individual researchers. To determine the performance of MiniMUGA, we genotyped 6899 samples from a wide variety of genetic backgrounds. The performance of MiniMUGA compares favorably with three previous iterations of the MUGA family of arrays, both in discrimination capabilities and robustness. We have generated publicly available consensus genotypes for 241 inbred strains including classical, wild-derived, and recombinant inbred lines. Here, we also report the detection of a substantial number of XO and XXY individuals across a variety of sample types, new markers that expand the utility of reduced complexity crosses to genetic backgrounds other than C57BL/6, and the robust detection of 17 genetic constructs. We provide preliminary evidence that the array can be used to identify both partial sex chromosome duplication and mosaicism, and that diagnostic SNPs can be used to determine how long inbred mice have been bred independently from the relevant main stock. We conclude that MiniMUGA is a valuable platform for genetic QC, and an important new tool to increase the rigor and reproducibility of mouse research

    Health status after transcatheter aortic valve replacement in patients at extreme surgical risk: Results from the CoreValve U.S. Trial

    Get PDF
    Objectives The purpose of this study was to characterize health status outcomes after transcatheter aortic valve replacement (TAVR) with a self-expanding bioprosthesis among patients at extreme surgical risk and to identify pre-procedural patient characteristics associated with a poor outcome. Background For many patients considering TAVR, improvement in quality of life may be of even greater importance than prolonged survival. Methods Patients with severe, symptomatic aortic stenosis who were considered to be at prohibitive risk for surgical aortic valve replacement were enrolled in the single-arm CoreValve U.S. Extreme Risk Study. Health status was assessed at baseline and at 1, 6, and 12 months after TAVR using the Kansas City Cardiomyopathy Questionnaire (KCCQ), the Short Form-12, and the EuroQol-5D. The overall summary scale of the KCCQ (range 0 to 100; higher scores = better health) was the primary health status outcome. A poor outcome after TAVR was defined as death, a KCCQ overall summary score (OS) <45, or a decline in KCCQ-OS of 10 points at 6-month follow-up. Results A total of 471 patients underwent TAVR via the transfemoral approach, of whom 436 (93%) completed the baseline health status survey. All health status measures demonstrated considerable impairment at baseline. After TAVR, there was substantial improvement in both disease-specific and generic health status measures, with an increase in the KCCQ-OS of 23.9 points (95% confidence interval [CI]: 20.3 to 27.5 points) at 1 month, 27.4 points (95% CI: 24.2 to 30.6 points) at 6 months, 27.4 points (95% CI: 24.1 to 30.8 points) at 12 months, along with substantial increases in Short Form-12 scores and EuroQol-5D utilities (all p < 0.003 compared with baseline). Nonetheless, 39% of patients had a poor outcome after TAVR. Baseline factors independently associated with poor outcome included wheelchair dependency, lower mean aortic valve gradient, prior coronary artery bypass grafting, oxygen dependency, very high predicted mortality with surgical aortic valve replacement, and low serum albumin. Conclusions Among patients with severe aortic stenosis, TAVR with a self-expanding bioprosthesis resulted in substantial improvements in both disease-specific and generic health-related quality of life, but there remained a large minority of patients who died or had very poor quality of life despite TAVR. Predictive models based on a combination of clinical factors as well as disability and frailty may provide insight into the optimal patient population for whom TAVR is beneficial. (Safety and Efficacy Study of the Medtronic CoreValve® System in the Treatment of Symptomatic Severe Aortic Stenosis in High Risk and Very High Risk Subjects Who Need Aortic Valve Replacement; NCT01240902
    corecore