12 research outputs found

    Fault current tests of a 5-m HTS cable

    Full text link

    Development of a Tritium Extruder for ITER Pellet Injection

    No full text
    As part of the International Thermonuclear Experimental Reactor (ITER) plasma fueling development program, Oak Ridge National Laboratory (ORNL) has fabricated a pellet injection system to test the mechanical and thermal properties of extruded tritium. Hydrogenic pellets will be used in ITER to sustain the fusion power in the plasma core and may be crucial in reducing first-wall tritium inventories by a process of "isotopic fueling" in which tritium-rich pellets fuel the burning plasma core and deuterium gas fuels the edge. This repeating single-stage pneumatic pellet injector, called the Tritium-Proof-of-Principle Phase II (TPOP-II) Pellet Injector, has a piston-driven mechanical extruder and is designed to extrude and accelerate hydrogenic pellets sized for the ITER device. The TPOP-II program has the following development goals: evaluate the feasibility of extruding tritium and deuterium-tritium (D-T) mixtures for use in future pellet injection systems; determine the mechanical and thermal properties of tritium and D-T extrusions; integrate, test, and evaluate the extruder in a repeating, single-stage light gas gun that is sized for the ITER application (pellet diameter -7 to 8 mm); evaluate options for recycling propellant and extruder exhaust gas; and evaluate operability and reliability of ITER prototypical fueling systems in an environment of significant tritium inventory that requires secondary and room containment systems. In tests with deuterium feed at ORNL, up to 13 pellets per extrusion have been extruded at rates up to 1 Hz and accelerated to speeds of 1.0 to 1.1 km/s, using hydrogen propellant gas at a supply pressure of 65 bar. Initially, deuterium pellets 7.5 mm in diameter and 11 mm in length were produced-the largest cryogenic pellets produced by the fusion program to date. These pellets represent about a 10% density perturbation to ITER. Subsequently, the extruder nozzle was modified to produce pellets that are almost 7.5-mm right circular cylinders. Tritium and D-T pellets have been produced in experiments at the Los Alamos National Laboratory Tritium Systems Test Assembly. About 38 g of tritium have been utilized in the experiment. The tritium was received in eight batches, six from product containers and two from the Isotope Separation System. Two types of runs were made: those in which the material was only extruded and those in which pellets were produced and fired with deuterium propellant. A total of 36 TZ runs and 28 D-T runs have been made. A total of 36 pure tritium runs and 28 D-T mixture runs were made. Extrusion experiments indicate that both T2 and D-T will require higher extrusion forces than D2 by about a factor of two

    Substrate and Stabilization Effects on the Transport AC Losses in YBCO Coated Conductors

    No full text

    High Voltage Testing of a 5-meter Prototype Triaxial HTS Cable

    No full text
    corecore