99 research outputs found

    Crues et inondations

    Get PDF

    The ecology of sex explains patterns of helping in arthropod societies

    Get PDF
    Authors thank the Natural Sciences and Engineering Research Council of Canada (NGD), the Clarendon Fund (NGD) and the Natural Environment Research Council (LR, NE/K009516/1; AG, NE/K009524/1) for funding.Across arthropod societies, sib-rearing (e.g. nursing or nest defence) may be provided by females, by males or by both sexes. According to Hamilton's ‘haplodiploidy hypothesis’, this diversity reflects the relatedness consequences of diploid vs. haplodiploid inheritance. However, an alternative ‘preadaptation hypothesis’ instead emphasises an interplay of ecology and the co-option of ancestral, sexually dimorphic traits for sib-rearing. The preadaptation hypothesis has recently received empirical support, but remains to be formalised. Here, we mathematically model the coevolution of sex-specific helping and sex allocation, contrasting these hypotheses. We find that ploidy per se has little effect. Rather, the ecology of sex shapes patterns of helping: sex-specific preadaptation strongly influences who helps; a freely adjustable sex ratio magnifies sex biases and promotes helping; and sib-mating, promiscuity, and reproductive autonomy also modulate the sex and abundance of helpers. An empirical survey reveals that patterns of sex-specific helping in arthropod taxa are consistent with the preadaptation hypothesis.Publisher PDFPeer reviewe

    Exile Vol. XVII No. 1

    Get PDF
    FICTION The Backyard Burial by Heather Johnson 9-11 French Persuasion by John Benes 18-22 In His Time by Keith Mcwalter 27-37 Time Ticking Off, Not Stopping by Holly Battles 39-40 ARTWORK by Roxy Sisson 13 by Bill Lutz 16 by Carol Belfatto 17 by Ned Bittinger 23 by Gail Lutsch 41 by Diane Ulmer 43 PHOTOGRAPHY by Tim Heth 3, 4, 5, 7, 9, 12, 15, 22, 38, 40, 44 by Rip Odell 15 by Maggie Hernandez 26, 42 POETRY For G. S. & A. B. T. by Paul Holbrook 2 Picture Writer by Julie Lockwood 6 Youth by Rufus Hurst 6 Today I Watched Flies Without Wings by Alice Merrill 6 Room 102 by Alice Merrill 6 The Flick by Debby Snyder 8 For P. E. H. by Timothy Cope 12 In Memory of Gertrude Stein by Michael Daugherty 14 Apogee Analogy by Paul Holbrook 15 First Impressions by Austin Hartman, Jr. 16 Count Jack Playing Peasant by Alice Merrill 24 Cherokee Arrowsmith by R. Crozier 24 road runs down valley by Fred Hoppe 25 Singularity by M. J. Wallace 25 Love\u27s Labour Lost by Tina Ostergard 25 Gnome by Cary Spear 25 Design and Layout: Keith McWalter 1 EXILE is the literary magazine of Denison University. It is entirely student-run and student edited, and receives operating funds from the Denison Campus Government Association. Submissions are edited anonymously and final actions are made independently by each staff. Printed by Ace News, Heath, Ohio.

    Genome And Secretome Analysis Of The Hemibiotrophic Fungal Pathogen, Moniliophthora Roreri, Which Causes Frosty Pod Rot Disease Of Cacao: Mechanisms Of The Biotrophic And Necrotrophic Phases

    Get PDF
    Background: The basidiomycete Moniliophthora roreri is the causal agent of Frosty pod rot (FPR) disease of cacao (Theobroma cacao), the source of chocolate, and FPR is one of the most destructive diseases of this important perennial crop in the Americas. This hemibiotroph infects only cacao pods and has an extended biotrophic phase lasting up to sixty days, culminating in plant necrosis and sporulation of the fungus without the formation of a basidiocarp.Results: We sequenced and assembled 52.3 Mb into 3,298 contigs that represent the M. roreri genome. Of the 17,920 predicted open reading frames (OFRs), 13,760 were validated by RNA-Seq. Using read count data from RNA sequencing of cacao pods at 30 and 60 days post infection, differential gene expression was estimated for the biotrophic and necrotrophic phases of this plant-pathogen interaction. The sequencing data were used to develop a genome based secretome for the infected pods. Of the 1,535 genes encoding putative secreted proteins, 1,355 were expressed in the biotrophic and necrotrophic phases. Analysis of the data revealed secretome gene expression that correlated with infection and intercellular growth in the biotrophic phase and invasive growth and plant cellular death in the necrotrophic phase.Conclusions: Genome sequencing and RNA-Seq was used to determine and validate the Moniliophthora roreri genome and secretome. High sequence identity between Moniliophthora roreri genes and Moniliophthora perniciosa genes supports the taxonomic relationship with Moniliophthora perniciosa and the relatedness of this fungus to other basidiomycetes. Analysis of RNA-Seq data from infected plant tissues revealed differentially expressed genes in the biotrophic and necrotrophic phases. The secreted protein genes that were upregulated in the biotrophic phase are primarily associated with breakdown of the intercellular matrix and modification of the fungal mycelia, possibly to mask the fungus from plant defenses. Based on the transcriptome data, the upregulated secreted proteins in the necrotrophic phase are hypothesized to be actively attacking the plant cell walls and plant cellular components resulting in necrosis. These genes are being used to develop a new understanding of how this disease interaction progresses and to identify potential targets to reduce the impact of this devastating disease. © 2014 Meinhardt et al.; licensee BioMed Central Ltd.151USDA; U.S. Department of AgricultureLatunde-Dada, A.O., Colletotrichum: tales of forcible entry, stealth, transient confinement and breakout (2001) Mol Plant Pathol, 2 (4), pp. 187-198. , 10.1046/j.1464-6722.2001.00069.x, 20573006Oliver, R.P., Ipcho, S.V.S., Arabidopsis pathology breathes new life into the necrotrophs-vs.-biotrophs classification of fungal pathogens (2004) Mol Plant Pathol, 5 (4), pp. 347-352. , 10.1111/j.1364-3703.2004.00228.x, 20565602Catanzariti, A.M., Dodds, P.N., Lawrence, G.J., Ayliffe, M.A., Ellis, J.G., Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors (2006) Plant Cell, 18 (1), pp. 243-256. , 10.1105/tpc.105.035980, 1323496, 16326930Link, T.I., Voegele, R.T., Secreted proteins of Uromyces fabae: similarities and stage specificity (2008) Mol Plant Pathol, 9 (1), pp. 59-66Brown, N.A., Antoniw, J., Hammond-Kosack, K.E., The predicted secretome of the plant pathogenic fungus Fusarium graminearum: a refined comparative analysis (2012) Plos One, 7 (4), pp. e33731. , 10.1371/journal.pone.0033731, 3320895, 22493673Thomma, B.P., Alternaria spp.: from general saprophyte to specific parasite (2003) Mol Plant Pathol, 4 (4), pp. 225-236. , 10.1046/j.1364-3703.2003.00173.x, 20569383Evans, H.C., Stalpers, J.A., Samson, R.A., Benny, G.L., Taxonomy of Monilia-Roreri, an important pathogen of theobroma-cacao in South-America (1978) Can J Bot, 56 (20), pp. 2528-2532Aime, M.C., Phillips-Mora, W., The causal agents of witches' broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae (2005) Mycologia, 97 (5), pp. 1012-1022. , 10.3852/mycologia.97.5.1012, 16596953Phillips-Mora, W., Wilkinson, M.J., Frosty pod of cacao: a disease with a limited geographic range but unlimited potential for damage (2007) Phytopathology, 97 (12), pp. 1644-1647. , 10.1094/PHYTO-97-12-1644, 18943726Meinhardt, L.W., Rincones, J., Bailey, B.A., Aime, M.C., Griffith, G.W., Zhang, D.P., Pereira, G.A.G., Moniliophthora perniciosa, the causal agent of witches' broom disease of cacao: what's new from this old foe? (2008) Mol Plant Pathol, 9 (5), pp. 577-588. , 10.1111/j.1364-3703.2008.00496.x, 19018989Ferreira, L.F.R., Duarte, K.M.R., Gomes, L.H., Carvalho, R.S., Leal, G.A., Aguiar, M.M., Armas, R.D., Tavares, F.C.A., Genetic diversity of polysporic isolates of Moniliophthora perniciosa (Tricholomataceae) (2012) Genet Mol Res, 11 (3), pp. 2559-2568. , 10.4238/2012.July.10.11, 22869076Phillips-Mora, W., Wilkinson, M.J., Frosty pod: a disease of limited geographic distribution but unlimited potential for damage (2006) Phytopathology, 96 (6), pp. S138-S138Evans, H.C., (1981) Pod Rot of Cacao caused by Moniliophthora (Monilia) roreri, , London: Commonwealth Agricultural Bureau, 24Joosten, M., de Wit, P., THE TOMATO-CLADOSPORIUM FULVUM INTERACTION: a versatile experimental system to study plant-pathogen interactions (1999) Annu Rev Phytopathol, 37, pp. 335-367. , 10.1146/annurev.phyto.37.1.335, 11701827Perfect, S.E., Green, J.R., Infection structures of biotrophic and hemibiotrophic fungal plant pathogens (2001) Mol Plant Pathol, 2 (2), pp. 101-108. , 10.1046/j.1364-3703.2001.00055.x, 20572997Scarpari, L.M., Meinhardt, L.W., Mazzafera, P., Pomella, A.W.V., Schiavinato, M.A., Cascardo, J.C.M., Pereira, G.A.G., Biochemical changes during the development of witches' broom: the most important disease of cocoa in Brazil caused by Crinipellis perniciosa (2005) J Exp Bot, 56 (413), pp. 865-877. , 10.1093/jxb/eri079, 15642708Melnick, R.L., Marelli, J., Bailey, B.A., The molecular interaction of Theobroma cacao and Moniliophthora perniciosa, causal agent of witches' broom, during infection of young pods (2011) Phytopathology, 101 (6), pp. S274-S274Melnick, R.L., Marelli, J.P., Sicher, R.C., Strem, M.D., Bailey, B.A., The interaction of Theobroma cacao and Moniliophthora perniciosa, the causal agent of witches' broom disease, during parthenocarpy (2012) Tree Genet Genomes, 8 (6), pp. 1261-1279Thomazella, D.P., Teixeira, P.J., Oliveira, H.C., Saviani, E.E., Rincones, J., Toni, I.M., Reis, O., Pereira, G.A., The hemibiotrophic cacao pathogen Moniliophthora perniciosa depends on a mitochondrial alternative oxidase for biotrophic development (2012) New Phytol, 194 (4), pp. 1025-1034. , 10.1111/j.1469-8137.2012.04119.x, 3415677, 22443281Mondego, J.M., Carazzolle, M.F., Costa, G.G., Formighieri, E.F., Parizzi, L.P., Rincones, J., Cotomacci, C., Pereira, G.A.G., A genome survey of Moniliophthora perniciosa gives new insights into Witches' Broom disease of cacao (2008) Bmc Genomics, 9, p. 548. , 10.1186/1471-2164-9-548, 2644716, 19019209Bailey, B.A., Crozier, J., Sicher, R.C., Strem, M.D., Melnick, R., Carazzolle, M.F., Costa, G.G.L., Meinhardt, L., Dynamic changes in pod and fungal physiology associated with the shift from biotrophy to necrotrophy during the infection of Theobroma cacao by Moniliophthora roreri (2013) Physiol Mol Plant P, 81, pp. 84-96Henrissat, B., A classification of glycosyl hydrolases based on amino acid sequence similarities (1991) Biochem J, 280 (PART 2), pp. 309-316. , 1130547, 1747104Dias, F.M., Vincent, F., Pell, G., Prates, J.A., Centeno, M.S., Tailford, L.E., Ferreira, L.M., Gilbert, H.J., Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of Cellvibrio mixtus mannosidase 5A (2004) J Biol Chem, 279 (24), pp. 25517-25526. , 10.1074/jbc.M401647200, 15014076Fibriansah, G., Masuda, S., Koizumi, N., Nakamura, S., Kumasaka, T., The 1.3 A crystal structure of a novel endo-beta-1,3-glucanase of glycoside hydrolase family 16 from alkaliphilic Nocardiopsis sp. strain F96 (2007) Proteins, 69 (3), pp. 683-690. , 10.1002/prot.21589, 17879342Markovic, O., Janecek, S., Pectin degrading glycoside hydrolases of family 28: sequence-structural features, specificities and evolution (2001) Protein Eng, 14 (9), pp. 615-631. , 10.1093/protein/14.9.615, 11707607Vandermarliere, E., Bourgois, T.M., Winn, M.D., van Campenhout, S., Volckaert, G., Delcour, J.A., Strelkov, S.V., Courtin, C.M., Structural analysis of a glycoside hydrolase family 43 arabinoxylan arabinofuranohydrolase in complex with xylotetraose reveals a different binding mechanism compared with other members of the same family (2009) Biochem J, 418 (1), pp. 39-47. , 10.1042/BJ20081256, 18980579Tiels, P., Baranova, E., Piens, K., De Visscher, C., Pynaert, G., Nerinckx, W., Stout, J., Callewaert, N., A bacterial glycosidase enables mannose-6-phosphate modification and improved cellular uptake of yeast-produced recombinant human lysosomal enzymes (2012) Nat Biotechnol, 30 (12), pp. 1225-1231. , 10.1038/nbt.2427, 23159880Ferreira, P., Hernandez-Ortega, A., Herguedas, B., Martinez, A.T., Medina, M., Aryl-alcohol oxidase involved in lignin degradation: a mechanistic study based on steady and pre-steady state kinetics and primary and solvent isotope effects with two alcohol substrates (2009) J Biol Chem, 284 (37), pp. 24840-24847. , 10.1074/jbc.M109.011593, 2757187, 19574215Mayer, A.M., Staples, R.C., Laccase: new functions for an old enzyme (2002) Phytochemistry, 60 (6), pp. 551-565. , 10.1016/S0031-9422(02)00171-1, 12126701Kersten, P.J., Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase (1990) Proc Natl Acad Sci U S A, 87 (8), pp. 2936-2940. , 10.1073/pnas.87.8.2936, 53808, 11607073Henrissat, B., Callebaut, I., Fabrega, S., Lehn, P., Mornon, J.P., Davies, G., Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases (1995) Proc Natl Acad Sci U S A, 92 (15), pp. 7090-7094. , 10.1073/pnas.92.15.7090, 41477, 7624375Wostemeyer, J., Kreibich, A., Repetitive DNA elements in fungi (Mycota): impact on genomic architecture and evolution (2002) Curr Genet, 41 (4), pp. 189-198. , 10.1007/s00294-002-0306-y, 12172959Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Oliver, S.G., Life with 6000 genes (1996) Science, 274 (5287), pp. 546-563. , 547, 10.1126/science.274.5287.546, 8849441Dean, R.A., Talbot, N.J., Ebbole, D.J., Farman, M.L., Mitchell, T.K., Orbach, M.J., Thon, M., Nicol, R., The genome sequence of the rice blast fungus Magnaporthe grisea (2005) Nature, 434 (7036), pp. 980-986. , 10.1038/nature03449, 15846337Labbe, J., Murat, C., Morin, E., Tuskan, G.A., Le Tacon, F., Martin, F., Characterization of transposable elements in the ectomycorrhizal fungus Laccaria bicolor (2012) Plos One, 7 (8), pp. e40197. , 10.1371/journal.pone.0040197, 3411680, 22870194Adomako, D., Cocoa pod husk pectin (1972) Phytochemistry, 11 (3), p. 1145Gan, P., Ikeda, K., Irieda, H., Narusaka, M., O'Connell, R.J., Narusaka, Y., Takano, Y., Shirasu, K., Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi (2013) New Phytol, 197 (4), pp. 1236-1249. , 10.1111/nph.12085, 23252678Garcia, O., Macedo, J.A.N., Tiburcio, R., Zaparoli, G., Rincones, J., Bittencourt, L.M.C., Ceita, G.O., Cascardo, J.C., Characterization of necrosis and ethylene-inducing proteins (NEP) in the basidiomycete Moniliophthora perniciosa, the causal agent of witches' broom in Theobroma cacao (2007) Mycol Res, 111, pp. 443-455. , 10.1016/j.mycres.2007.01.017, 17512713Pemberton, C.L., Salmond, G.P., The Nep1-like proteins-a growing family of microbial elicitors of plant necrosis (2004) Mol Plant Pathol, 5 (4), pp. 353-359. , 10.1111/j.1364-3703.2004.00235.x, 20565603Zaparoli, G., Barsottini, M.R., de Oliveira, J.F., Dyszy, F., Teixeira, P.J., Barau, J.G., Garcia, O., Dias, S.M., The crystal structure of necrosis-and ethylene-inducing protein 2 from the causal agent of cacao's Witches' Broom disease reveals key elements for its activity (2011) Biochemistry-Us, 50 (45), pp. 9901-9910Cabral, A., Oome, S., Sander, N., Kufner, I., Nurnberger, T., Van den Ackerveken, G., Nontoxic Nep1-like proteins of the downy mildew pathogen Hyaloperonospora arabidopsidis: repression of necrosis-inducing activity by a surface-exposed region (2012) Mol Plant Microbe Interact, 25 (5), pp. 697-708. , 10.1094/MPMI-10-11-0269, 22235872Mosquera, G., Giraldo, M.C., Khang, C.H., Coughlan, S., Valent, B., Interaction transcriptome analysis identifies magnaporthe oryzae BAS1-4 as Biotrophy-associated secreted proteins in rice blast disease (2009) Plant Cell, 21 (4), pp. 1273-1290. , 10.1105/tpc.107.055228, 2685627, 19357089Paper, J.M., Scott-Craig, J.S., Adhikari, N.D., Cuomo, C.A., Walton, J.D., Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum (2007) Proteomics, 7 (17), pp. 3171-3183. , 10.1002/pmic.200700184, 17676664van den Burg, H.A., Harrison, S.J., Joosten, M.H., Vervoort, J., de Wit, P.J., Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection (2006) Mol Plant Microbe Interact, 19 (12), pp. 1420-1430. , 10.1094/MPMI-19-1420, 17153926Roby, D., Gadelle, A., Toppan, A., Chitin oligosaccharides as elicitors of chitinase activity in melon plants (1987) Biochem Biophys Res Commun, 143 (3), pp. 885-892. , 10.1016/0006-291X(87)90332-9, 3566760Deising, H., Siegrist, J., Chitin deacetylase activity of the rust uromyces-viciae-fabae is controlled by fungal morphogenesis (1995) Fems Microbiol Lett, 127 (3), pp. 207-211Teixeira, P.J.P.L., Thomazella, D.P.T., Vidal, R.O., Do Prado, P.F.V., Reis, O., Baroni, R.M., Franco, S.F., Mondego, J.M.C., The fungal pathogen moniliophthora perniciosa has genes similar to plant PR-1 that are highly expressed during its interaction with cacao (2012) Plos One, 7 (9)Riviere, M.P., Marais, A., Ponchet, M., Willats, W., Galiana, E., Silencing of acidic pathogenesis-related PR-1 genes increases extracellular beta-(1→ 3)-glucanase activity at the onset of tobacco defence reactions (2008) J Exp Bot, 59 (6), pp. 1225-1239. , 10.1093/jxb/ern044, 18390849Levy, A., Guenoune-Gelbart, D., Epel, B.L., Beta-1,3-Glucanases: plasmodesmal gate keepers for intercellular communication (2007) Plant Signal Behav, 2 (5), pp. 404-407. , 10.4161/psb.2.5.4334, 2634228, 19704615Prados-Rosales, R.C., Roldan-Rodriguez, R., Serena, C., Lopez-Berges, M.S., Guarro, J., Martinez-del-Pozo, A., Di Pietro, A., A PR-1-like protein of fusarium oxysporum functions in virulence on mammalian hosts (2012) J Biol Chem, 287 (26), pp. 21970-21979. , 10.1074/jbc.M112.364034, 3381157, 22553200Kershaw, M.J., Talbot, N.J., Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis (1998) Fungal Genet Biol, 23 (1), pp. 18-33. , 10.1006/fgbi.1997.1022, 9501475Zelena, K., Takenberg, M., Lunkenbein, S., Woche, S.K., Nimtz, M., Berger, R.G., PfaH2: a novel hydrophobin from the ascomycete Paecilomyces farinosus (2013) Biotechnol Appl Biochem, 60 (2), pp. 147-154. , 10.1002/bab.1077, 23600571Wosten, H.A., Hydrophobins: multipurpose proteins (2001) Annu Rev Microbiol, 55, pp. 625-646. , 10.1146/annurev.micro.55.1.625, 11544369Bayry, J., Aimanianda, V., Guijarro, J.I., Sunde, M., Latge, J.P., Hydrophobins-unique fungal proteins (2012) PLoS Pathog, 8 (5), pp. e1002700. , 10.1371/journal.ppat.1002700, 3364958, 22693445De Oliveira, A.L., Gallo, M., Pazzagli, L., Benedetti, C.E., Cappugi, G., Scala, A., Pantera, B., Cicero, D.O., The structure of the elicitor cerato-platanin (CP), the first member of the CP fungal protein family, reveals a double psi beta-barrel fold and carbohydrate binding (2011) J Biol Chem, 286 (20), pp. 17560-17568. , 10.1074/jbc.M111.223644, 3093830, 21454637Baccelli, I., Comparini, C., Bettini, P.P., Martellini, F., Ruocco, M., Pazzagli, L., Bernardi, R., Scala, A., The expression of the cerato-platanin gene is related to hyphal growth and chlamydospores formation in Ceratocystis platani (2012) Fems Microbiol Lett, 327 (2), pp. 155-163. , 10.1111/j.1574-6968.2011.02475.x, 22136757Zaparoli, G., Cabrera, O.G., Medrano, F.J., Tiburcio, R., Lacerda, G., Pereira, G.G., Identification of a second family of genes in Moniliophthora perniciosa, the causal agent of witches' broom disease in cacao, encoding necrosis-inducing proteins similar to cerato-platanins (2009) Mycol Res, 113, pp. 61-72. , 10.1016/j.mycres.2008.08.004, 18796332Lombardi, L., Faoro, F., Luti, S., Baccelli, I., Martellini, F., Bernardi, R., Picciarelli, P., Pazzagli, L., Differential timing of defense-related responses induced by cerato-platanin and cerato-populin, two non-catalytic fungal elicitors (2013) Physiol Plant, 149, pp. 408-421Yang, Y., Zhang, H., Li, G., Li, W., Wang, X., Song, F., Ectopic expression of MgSM1, a Cerato-platanin family protein from Magnaporthe grisea, confers broad-spectrum disease resistance in Arabidopsis (2009) Plant Biotechnol J, 7 (8), pp. 763-777. , 10.1111/j.1467-7652.2009.00442.x, 19754836Bhadauria, V., Banniza, S., Vandenberg, A., Selvaraj, G., Wei, Y., EST mining identifies proteins putatively secreted by the anthracnose pathogen Colletotrichum truncatum (2011) Bmc Genomics, 12, p. 327. , 10.1186/1471-2164-12-327, 3149586, 21699715Frischmann, A., Neudl, S., Gaderer, R., Bonazza, K., Zach, S., Gruber, S., Spadiut, O., Seidl-Seiboth, V., Self-assembly at air/water interfaces and carbohydrate binding properties of the small secreted protein EPL1 from the fungus trichoderma atroviride (2013) J Biol Chem, 288 (6), pp. 4278-4287. , 10.1074/jbc.M112.427633, 3567679, 23250741Jeong, J.S., Mitchell, T.K., Dean, R.A., The magnaporthe grisea snodprot1 homolog, MSP1, is required for virulence (2007) Fems Microbiol Lett, 273 (2), pp. 157-165. , 10.1111/j.1574-6968.2007.00796.x, 17590228Peter, M., Courty, P.E., Kohler, A., Delaruelle, C., Martin, D., Tagu, D., Frey-Klett, P., Martin, F., Analysis of expressed sequence tags from the ectomycorrhizal basidiomycetes Laccaria bicolor and Pisolithus microcarpus (2003) New Phytol, 159 (1), pp. 117-129Cosgrove, D.J., Loosening of plant cell walls by expansins (2000) Nature, 407 (6802), pp. 321-326. , 10.1038/35030000, 11014181Quiroz-Castaneda, R.E., Martinez-Anaya, C., Cuervo-Soto, L.I., Segovia, L., Folch-Mallol, J.L., Loosenin, a novel protein with cellulose-disrupting activity from Bjerkandera adusta (2011) Microb Cell Fact, 10, p. 8. , 10.1186/1475-2859-10-8, 3050684, 21314954Brotman, Y., Briff, E., Viterbo, A., Chet, I., Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization (2008) Plant Physiol, 147 (2), pp. 779-789. , 10.1104/pp.108.116293, 2409044, 18400936Yamada, M., Sakuraba, S., Shibata, K., Taguchi, G., Inatomi, S., Okazaki, M., Shimosaka, M., Isolation and analysis of genes specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes by fluorescence differential display (2006) Fems Microbiol Lett, 254 (1), pp. 165-172. , 10.1111/j.1574-6968.2005.00023.x, 16451195Rincones, J., Scarpari, L.M., Carazzolle, M.F., Mondego, J.M.C., Formighieri, E.F., Barau, J.G., Costa, G.G.L., Pereira, G.A., Differential gene expression between the biotrophic-like and saprotrophic mycelia of the witches' broom pathogen Moniliophthora perniciosa (2008) Mol Plant Microbe In, 21 (7), pp. 891-908Zerbino, D.R., Birney, E., Velvet: algorithms for de novo short read assembly using de Bruijn graphs (2008) Genome Res, 18 (5), pp. 821-829. , 10.1101/gr.074492.107, 2336801, 18349386Sommer, D.D., Delcher, A.L., Salzberg, S.L., Pop, M., Minimus: a fast, lightweight genome assembler (2007) BMC Bioinforma, 8, p. 64Ter-Hovhannisyan, V., Lomsadze, A., Chernoff, Y.O., Borodovsky, M., Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training (2008) Genome Res, 18 (12), pp. 1979-1990. , 10.1101/gr.081612.108, 2593577, 18757608Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., Morgenstern, B., AUGUSTUS: ab initio prediction of alternative transcripts (2006) Nucleic Acids Res, 34, pp. W435-W439. , Web Server issue, 1538822, 16845043Stanke, M., Tzvetkova, A., Morgenstern, B., AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome (2006) Genome Biol, 7 (SUPPL. 1), pp. S11 11-18Slater, G.S., Birney, E., Automated generation of heuristics for biological sequence comparison (2005) BMC Bioinforma, 6, p. 31Borodovsky, M., Lomsadze, A., Ivanov, N., Mills, R., Eukaryotic gene prediction using GeneMark.hmm (2003) Curr Protoc Bioinformatics, , Chapter 4, Unit4 6Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J., White, O., Wortman, J.R., Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments (2008) Genome Biol, 9 (1), pp. R7. , 10.1186/gb-2008-9-1-r7, 2395244, 18190707Koski, L.B., Gray, M.W., Lang, B.F., Burger, G., AutoFACT: an automatic functional annotation and classification tool (2005) BMC Bioinforma, 6, p. 151Suzek, B.E., Huang, H., McGarvey, P., Mazumder, R., Wu, C.H., UniRef: comprehensive and non-redundant UniProt reference clusters (2007) Bioinformatics, 23 (10), pp. 1282-1288. , 10.1093/bioinformatics/btm098, 17379688Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., Griffiths-Jones, S., Sonnhammer, E.L., The Pfam protein families database (2002) Nucleic Acids Res, 30 (1), pp. 276-280. , 10.1093/nar/30.1.276, 99071,

    Ebola virus disease

    Get PDF
    Ebola virus disease (EVD) is a severe and frequently lethal disease caused by Ebola virus (EBOV). EVD outbreaks typically start from a single case of probable zoonotic transmission, followed by human-to-human transmission via direct contact or contact with infected bodily fluids or contaminated fomites. EVD has a high case–fatality rate; it is characterized by fever, gastrointestinal signs and multiple organ dysfunction syndrome. Diagnosis requires a combination of case definition and laboratory tests, typically real-time reverse transcription PCR to detect viral RNA or rapid diagnostic tests based on immunoassays to detect EBOV antigens. Recent advances in medical countermeasure research resulted in the recent approval of an EBOV-targeted vaccine by European and US regulatory agencies. The results of a randomized clinical trial of investigational therapeutics for EVD demonstrated survival benefits from two monoclonal antibody products targeting the EBOV membrane glycoprotein. New observations emerging from the unprecedented 2013–2016 Western African EVD outbreak (the largest in history) and the ongoing EVD outbreak in the Democratic Republic of the Congo have substantially improved the understanding of EVD and viral persistence in survivors of EVD, resulting in new strategies toward prevention of infection and optimization of clinical management, acute illness outcomes and attendance to the clinical care needs of patients

    Deriving the dietary approaches to stop hypertension (DASH) score in women from seven pregnancy cohorts from the European alphabet consortium

    Get PDF
    The ALPHABET consortium aims to examine the interplays between maternal diet quality, epigenetics and offspring health in seven pregnancy/birth cohorts from five European countries. We aimed to use the Dietary Approaches to Stop Hypertension (DASH) score to assess diet quality, but different versions have been published. To derive a single DASH score allowing cross-country, cross-cohort and cross-period comparison and limiting data heterogeneity within the ALPHABET consortium, we harmonised food frequency questionnaire (FFQ) data collected before and during pregnancy in ≥26,500 women. Although FFQs differed strongly in length and content, we derived a consortium DASH score composed of eight food components by combining the prescriptive original DASH and the DASH described by Fung et al. Statistical issues tied to the nature of the FFQs led us to re-classify two food groups (grains and dairy products). Most DASH food components exhibited pronounced between-cohort variability, including non-full-fat dairy products (median intake ranging from 0.1 to 2.2 servings/day), sugar-sweetened beverages/sweets/added sugars (0.3–1.7 servings/day), fruits (1.1–3.1 servings/day), and vegetables (1.5–3.6 servings/day). We successfully developed a harmonized DASH score adapted to all cohorts being part of the ALPHABET consortium. This methodological work may benefit other research teams in adapting the DASH to their study’s specificities

    Dust Devil Tracks

    Get PDF
    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns

    State of the field: What can political ethnography tell us about anti-politics and democratic disaffection?

    Get PDF
    This article adopts and reinvents the ethnographic approach to uncover what governing elites do, and how they respond to public disaffection. Although there is significant work on the citizens’ attitudes to the governing elite (the demand side) there is little work on how elites interpret and respond to public disaffection (the supply side). We argue that ethnography is the best available research method for collecting data on the supply side. In doing so, we tackle long-standing stereotypes in political science about the ethnographic method and what it is good for. We highlight how the innovative and varied practices of contemporary ethnography are ideally suited to shedding light into the ‘black box’ of elite politics. We demonstrate the potential pay-off with reference to important examples of elite ethnography from the margins of political science scholarship. The implications from these rich studies, we argue, suggest a reorientation of how we understand the drivers of public disaffection and the role that political elites play in exacerbating cynicism and disappointment. We conclude by pointing to the benefits to the discipline in embracing elite ethnography both to diversify the methodological toolkit in explaining the complex dynamics of disaffection,and to better enable engagement in renewed public debate about the political establishment

    Applications of electrified dust and dust devil electrodynamics to Martian atmospheric electricity

    Get PDF
    Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kVm-1 to 100 kVm-1 have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m-1 can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface)-MicroARES (Atmospheric Radiation and Electricity Sensor) instrumentation to Mars in 2016 for the first in situ measurements

    The global atmospheric electrical circuit and climate

    Get PDF
    Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Through the (inverse) solar modulation of cosmic rays, the resulting columnar ionisation changes may allow the global circuit to convey a solar influence to meteorological phenomena of the lower atmosphere. Electrical effects on non-thunderstorm clouds have been proposed to occur via the ion-assisted formation of ultra-fine aerosol, which can grow to sizes able to act as cloud condensation nuclei, or through the increased ice nucleation capability of charged aerosols. Even small atmospheric electrical modulations on the aerosol size distribution can affect cloud properties and modify the radiative balance of the atmosphere, through changes communicated globally by the atmospheric electrical circuit. Despite a long history of work in related areas of geophysics, the direct and inverse relationships between the global circuit and global climate remain largely quantitatively unexplored. From reviewing atmospheric electrical measurements made over two centuries and possible paleoclimate proxies, global atmospheric electrical circuit variability should be expected on many timescale
    corecore