4 research outputs found

    Laser tweezers for atomic solitons

    Full text link
    We describe a controllable and precise laser tweezers for Bose-Einstein condensates of ultracold atomic gases. In our configuration, a laser beam is used to locally modify the sign of the scattering length in the vicinity of a trapped BEC. The induced attractive interactions between atoms allow to extract and transport a controllable number of atoms. We analyze, through numerical simulations, the number of emitted atoms as a function of the width and intensity of the outcoupling beam. We also study different configurations of our system, as the use of moving beams. The main advantage of using the control laser beam to modify the nonlinear interactions in comparison to the usual way of inducing optical forces, i.e. through linear trapping potentials, is to improve the controllability of the outcoupled solitary wave-packet, which opens new possibilities for engineering macroscopic quantum states.Comment: 6 pages, 7 figure

    Solitary waves for linearly coupled nonlinear Schrodinger equations with inhomogeneous coefficients

    Full text link
    Motivated by the study of matter waves in Bose-Einstein condensates and coupled nonlinear optical systems, we study a system of two coupled nonlinear Schrodinger equations with inhomogeneous parameters, including a linear coupling. For that system we prove the existence of two different kinds of homoclinic solutions to the origin describing solitary waves of physical relevance. We use a Krasnoselskii fixed point theorem together with a suitable compactness criterion.Comment: 16 page
    corecore