12 research outputs found

    Age-related differences in corticomotor excitability and inhibitory processes during a visuomotor RT task

    Get PDF
    This study tested the postulation that change in the ability to modulate corticospinal excitability and inhibitory processes underlie age-related differences in response preparation and generation during tasks requiring either rapid execution of a motor action or actively withholding that same action. Younger (n = 13, mean age = 26.0 years) and older adults (n = 13, mean age = 65.5 years) performed an RT task in which a warning signal (WS) was followed by an imperative signal (IS) to which participants were required to respond with a rapid flexion of the right thumb (go condition) or withhold their response (no-go condition). We explored the neural correlates of response preparation, generation, and inhibition using single- and paired-pulse TMS, which was administered at various times between WS and IS (response preparation phase) and between IS and onset of response-related muscle activity in the right thumb (response generation phase). Both groups exhibited increases in motor-evoked potential amplitudes (relative to WS onset) during response generation; however, this increase began earlier and was more pronounced for the younger adults in the go condition. Moreover, younger adults showed a general decrease in short-interval intracortical inhibition during response preparation in both the go and no-go conditions, which was not observed in older adults. Importantly, correlation analysis suggested that for older adults the task-related increases of corticospinal excitability and intracortical inhibition were associated with faster RT. We propose that the declined ability to functionally modulate corticospinal activity with advancing age may underlie response slowing in older adults

    An ERP study of age-related differences in the central cost of interlimb coordination

    No full text
    The study investigated event-related EEG potentials during concurrent performance of interlimb coordination and visual oddball tasks by younger and older adults. Coordination task difficulty was equated between age groups by allowing participants to perform the task at self-determined frequencies. The amplitude of the P3b component of the event-related potentials (ERPs) elicited by visual task targets showed a different pattern across midline sites (Fz, Cz, Pz) for younger and older adults. While younger adults showed a parietal maximum, P3b amplitudes in older adults did not differ across midline site, with lower amplitudes at central and parietal sites than younger adults but higher amplitude at the frontal site. Younger adults also had significantly shorter P3b latency than older adults. The results suggest that older adults may rely more on cognitive control of their movements than younger adults

    Slow and steady is not as easy as it sounds: Interlimb coordination at slow speed is associated with elevated attentional demand especially in older adults

    No full text
    The present study investigated age-related changes in the attentional demands associated with interlimb coordination involving upper and lower limbs performed at three different movement frequencies. Younger and older adults performed rhythmical, 180° out-of-phase flexion–extension movements of the knee and elbow with either ipsilateral (right arm, right leg) or contralateral (right arm, left leg) limbs at 20, 60, and 100 % of each individual’s maximum movement frequency. A concurrent vocal reaction time task (dual task) was used to assess attentional load. There were two major findings: (1) The attentional cost associated with undertaking the required coordination patterns was greatest at the slowest movement frequency, and this additional attentional load was most pronounced for older adults; (2) the manipulation of movement frequency had a distinct effect on the coordination performance: moving at the fastest frequency degraded the accuracy and stability of coordination, while moving at the slowest movement frequency led to increased temporal variability, particularly in older adults. Coordination performance at slowest movement frequency required the greatest cognitive demand in older adults relative to other movement frequencies, suggesting that going ‘slow and steady’ is not necessarily less attentionally demanding for older adults

    Dual-task interference: Attentional and neurophysiological influences

    No full text
    Performing two tasks simultaneously often degrades performance of one or both tasks. While this dual-task interference is classically interpreted in terms of shared attentional resources, where two motor tasks are performed simultaneously interactions within primary motor cortex (i.e., activity-dependent coupling) may also be a contributing factor. In the present study TMS (transcranial magnetic stimulation) was used to examine the contribution of activity-dependent coupling to dual-task interference during concurrent performance of a bimanual coordination task and a discrete probe reaction time (RT) task involving the foot. Experiments 1 and 2 revealed that activity-dependent coupling within the leg corticomotor pathway was greater during dual-task performance than single-task performance, and this was associated with interference on the probe RT task (i.e., increased RT). Experiment 3 revealed that dual-task interference occurred regardless of whether the dual-task involved two motor tasks or a motor and cognitive task, however activity-dependent coupling was present only when a dual motor task was performed. This suggests that activity-dependent coupling is less detrimental to performance than attentional processes operating upstream of the corticomotor system. Finally, while prioritising the RT task reduced, but did not eliminate, dual-task interference the contribution of activity-dependent coupling to dual-task interference was not affected by task prioritisation. This suggests that although activity-dependent coupling may contribute to dual motor-task interference, attentional processes appear to be more important. It also suggests that activity-dependent coupling may not be subject to modulation by attentional processes. (C) 2009 Elsevier B.V. All rights reserved.Australian Research Council[D130451217]Capes-Brazi

    Age-related differences in inhibitory processes during interlimb coordination

    No full text
    The study examined the neurophysiological correlates of age-related changes in the coordination of hand and foot movements. Young and older adults (N = 30) performed cyclical isodirectional and non-isodirectional hand–foot movements with contralateral and ipsilateral limb combinations. Motor evoked potentials (MEPs) and silent period durations following transcranial magnetic stimulation (TMS) were measured from the right extensor carpi radialis (ECR) muscle during the interlimb coordination tasks. Older adults demonstrated lower coordination stability than younger adults, particularly when performing non-isodirectional movements with ipsilateral limbs. For all coordination tasks, MEP amplitude was lower in older compared with young participants. Young adults showed significantly longer silent period durations when the coordination pattern involved ipsilateral limbs than during contralateral limb coordination. In contrast, silent period durations did not differ between contralateral and ipsilateral limb coordination in older adults. These results suggest that deterioration in motor performance with advancing age may be associated with a decreased ability to modulate inhibitory function

    Age-related differences in corticospinal excitability and inhibition during coordination of upper and lower limbs

    No full text
    The ability to coordinate upper and lower limbs--a prerequisite for many everyday activities--is known to decline with age. Here we report 2 experiments in which transcranial magnetic stimulation (TMS) was used to assess corticospinal excitatory and inhibitory processes in younger and older adults during cyclical hand-foot movements. In experiment 1, motor evoked potentials (MEP) and silent period (SP) durations were measured from the active right extensor carpi radialis (ECR) muscle while it executed rhythmic oscillations in conjunction with the right or left foot. Younger adults exhibited increased SP with ipsilateral limb combinations and decreased SP with contralateral limb combinations, relative to a baseline hand only condition. Strikingly, older adults exhibited a reduced SP when ipsilateral limbs moved in opposite directions. This effect was found to be most pronounced in those older adults who exhibited poor coordination performance, suggesting that the inability to regulate inhibitory processes may underlie age-related degradation of task performance. Experiment 2 examined motor evoked potentials and SP duration in the left extensor carpi radialis which maintained a tonic contraction while the coordination task was undertaken by the right arm and right or left foot. For younger adults, coordination of ipsilateral limbs was accompanied by increased inhibition in the ipsilateral motor cortex than during the coordination of contralateral limbs. No differences in SP between conditions were noted for the older adults. In summary, older adults' reduced ability to coordinate upper and lower limbs may be related to the capacity to regulate inhibitory function in both hemispheres. This study suggests for the first time a direct link between age-related differences in interlimb coordination and the control of corticospinal inhibitory processes

    Inter- and Intra-individual variability following intermittent theta burst stimulation: Implications for rehabilitation and recovery

    No full text
    Background The continued refinement of non-invasive brain stimulation (NBS) techniques is indicative of promising clinical and rehabilitative interventions that are able to modulate cortical excitability. Intermittent theta burst stimulation (iTBS) is one such technique that can increase cortical excitability, purportedly via LTP-like mechanisms. While iTBS may have the capacity to promote recovery after neurological injury, and to combat cognitive and motor decline, recent reports observed highly variable effects across individuals, questioning the efficacy of iTBS as a clinical tool. Objective The aim of this study was to examine intra-individual reliability and inter-individual variability in responses to iTBS. Methods Thirty healthy participants completed two experimental sessions of the iTBS protocol 1–3 weeks apart. Motor evoked potentials in response to single pulse TMS were used to assess corticospinal excitability prior to, and up to 36 min following, iTBS. Results At the group level, iTBS evoked statistically significant increases in motor cortical excitability across both sessions (P < 0.001), with 22 out of 30 participants exhibiting increases in excitability in both sessions. A strong intraclass correlation demonstrated that both the direction, and magnitude of the plastic changes were reliable at the individual level. Conclusions Overall, our results suggest that iTBS is capable of inducing relatively robust and consistent effects within and between young individuals. As such, the capacity for iTBS to be exploited in clinical and rehabilitative interventions should continue to be explored
    corecore