2 research outputs found

    External basic hyperthermia devices for preclinical studies in small animals

    No full text
    Preclinical studies have shown that application of mild hyperthermia (40–43 °C) is a promising adjuvant to solid tumor treatment. To improve preclinical testing, enhance reproducibility, and allow comparison of the obtained results, it is crucial to have standardization of the available methods. Reproducibility of methods in and between research groups on the same techniques is crucial to have a better prediction of the clinical outcome and to improve new treatment strategies (for instance with heat‐sensitive nanoparticles). Here we provide a preclinically oriented review on the use and applicability of basic hyperthermia systems available for solid tumor thermal treatment in small animals. The complexity of these techniques ranges from a simple, low‐cost water bath approach, irradiation with light or lasers, to advanced ultrasound and capacitive heating de

    Preclinical studies in small animals for advanced drug delivery using hyperthermia and intravital microscopy

    No full text
    This paper presents three devices suitable for the preclinical application of hyperthermia via the simultaneous high-resolution imaging of intratumoral events. (Pre)clinical studies have con-firmed that the tumor micro-environment is sensitive to the application of local mild hyperthermia. Therefore, heating is a promising adjuvant to aid the efficacy of radiotherapy or chemotherapy. More so, the application of mild hyperthermia is a useful stimulus for triggered drug release from heat-sensitive nanocarriers. The response of thermosensitive nanoparticles to hyperthermia and en-suing intratumoral kinetics are considerably complex in both space and time. To obtain better insight into intratumoral processes, longitudinal imaging (preferable in high spatial and temporal resolution) is highly informative. Our devices are based on (i) an external electric heating adaptor for the dorsal skinfold model, (ii) targeted radiofrequency application, and (iii) a microwave an-tenna for heating of internal tumors. These models, while of some technical complexity, significantly add to the understanding of effects of mild hyperthermia warranting implementation in research on hyperthermia.</p
    corecore