953 research outputs found

    Structure of d(TGCGCA)(2) and a comparison with other DNA Hexamers

    Get PDF
    The X-ray crystal structure of d(TGCGCA)(2) has been determined at 120 K to a resolution of 1.3 Angstrom. Hexamer duplexes, in the Z-DNA conformation, pack in an arrangement similar to the 'pure spermine form' [Egli et al. (1991). Biochemistry, 30, 11388-11402] but with significantly different cell dimensions. The phosphate backbone exists in two equally populated discrete conformations at one nucleotide step, around phosphate 11. The structure contains two ordered cobalt hexammine molecules which have roles in stabilization of both the Z-DNA conformation of the duplex and in crystal packing. A comparison of d(TGCGCA)(2) with other Z-DNA hexamer structures available in the Nucleic Acid Database illustrates the elusive nature of crystal packing. A review of the interactions with the metal cations Na+, Mg2+ and Co3+ reveals a relatively small proportion of phosphate binding and that close contacts between metal ions are common. A prediction of the water structure is compared with the observed pattern in the reported structure

    Visual motherese? Signal-to-noise ratios in toddler-directed television

    Get PDF
    Younger brains are noisier information processing systems; this means that information for younger individuals has to allow clearer differentiation between those aspects that are required for the processing task in hand (the ‘signal’) and those that are not (the ‘noise’). We compared toddler-directed and adult-directed TV programmes (TotTV/ATV). We examined how low-level visual features (that previous research has suggested influence gaze allocation) relate to semantic information, namely the location of the character speaking in each frame. We show that this relationship differs between TotTV and ATV. First, we conducted Receiver Operator Characteristics analyses and found that feature congestion predicted speaking character location in TotTV but not ATV. Second, we used multiple analytical strategies to show that luminance differentials (flicker) predict face location more strongly in TotTV than ATV. Our results suggest that TotTV designers have intuited techniques for controlling toddler attention using low-level visual cues. The implications of these findings for structuring childhood learning experiences away from a screen are discussed

    Superconducting properties of the attractive Hubbard model

    Full text link
    A self-consistent set of equations for the one-electron self-energy in the ladder approximation is derived for the attractive Hubbard model in the superconducting state. The equations provide an extension of a T-matrix formalism recently used to study the effect of electron correlations on normal-state properties. An approximation to the set of equations is solved numerically in the intermediate coupling regime, and the one-particle spectral functions are found to have four peaks. This feature is traced back to a peak in the self-energy, which is related to the formation of real-space bound states. For comparison we extend the moment approach to the superconducting state and discuss the crossover from the weak (BCS) to the intermediate coupling regime from the perspective of single-particle spectral densities.Comment: RevTeX format, 8 figures. Accepted for publication in Z.Phys.

    Momentum flux density, kinetic energy density and their fluctuations for one-dimensional confined gases of non-interacting fermions

    Full text link
    We present a Green's function method for the evaluation of the particle density profile and of the higher moments of the one-body density matrix in a mesoscopic system of N Fermi particles moving independently in a linear potential. The usefulness of the method is illustrated by applications to a Fermi gas confined in a harmonic potential well, for which we evaluate the momentum flux and kinetic energy densities as well as their quantal mean-square fluctuations. We also study some properties of the kinetic energy functional E_{kin}[n(x)] in the same system. Whereas a local approximation to the kinetic energy density yields a multi-valued function, an exact single-valued relationship between the density derivative of E_{kin}[n(x)] and the particle density n(x) is demonstrated and evaluated for various values of the number of particles in the system.Comment: 10 pages, 5 figure

    Tensor completion in hierarchical tensor representations

    Full text link
    Compressed sensing extends from the recovery of sparse vectors from undersampled measurements via efficient algorithms to the recovery of matrices of low rank from incomplete information. Here we consider a further extension to the reconstruction of tensors of low multi-linear rank in recently introduced hierarchical tensor formats from a small number of measurements. Hierarchical tensors are a flexible generalization of the well-known Tucker representation, which have the advantage that the number of degrees of freedom of a low rank tensor does not scale exponentially with the order of the tensor. While corresponding tensor decompositions can be computed efficiently via successive applications of (matrix) singular value decompositions, some important properties of the singular value decomposition do not extend from the matrix to the tensor case. This results in major computational and theoretical difficulties in designing and analyzing algorithms for low rank tensor recovery. For instance, a canonical analogue of the tensor nuclear norm is NP-hard to compute in general, which is in stark contrast to the matrix case. In this book chapter we consider versions of iterative hard thresholding schemes adapted to hierarchical tensor formats. A variant builds on methods from Riemannian optimization and uses a retraction mapping from the tangent space of the manifold of low rank tensors back to this manifold. We provide first partial convergence results based on a tensor version of the restricted isometry property (TRIP) of the measurement map. Moreover, an estimate of the number of measurements is provided that ensures the TRIP of a given tensor rank with high probability for Gaussian measurement maps.Comment: revised version, to be published in Compressed Sensing and Its Applications (edited by H. Boche, R. Calderbank, G. Kutyniok, J. Vybiral

    Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap

    Full text link
    We study the numerical resolution of the time-dependent Gross-Pitaevskii equation, a non-linear Schroedinger equation used to simulate the dynamics of Bose-Einstein condensates. Considering condensates trapped in harmonic potentials, we present an efficient algorithm by making use of a spectral Galerkin method, using a basis set of harmonic oscillator functions, and the Gauss-Hermite quadrature. We apply this algorithm to the simulation of condensate breathing and scissors modes.Comment: 23 pages, 5 figure

    Identification of genes transcriptionally responsive to the loss of MLL fusions in MLL-rearranged acute lymphoblastic leukemia

    Get PDF
    MLL-rearranged acute lymphoblastic leukemia (ALL) in infants (<1 year) is characterized by high relapse rates and a dismal prognosis. To facilitate the discovery of novel therapeutic targets, we here searched for genes directly influenced by the repression of various MLL fusions. Methods For this, we performed gene expression profiling after siRNA-mediated repression of MLLAF4, MLL-ENL, and AF4-MLL in MLL -rearranged ALL cell line models. The obtained results were compared with various already established gene signatures including those consisting of known MLL-AF4 target genes, or those associated with primary MLL-rearranged infant ALL samples. Results Genes that were down-regulated in response to the repression of MLL-AF4 and MLL-ENL appeared characteristically expressed in primary MLL-rearranged infant ALL samples, and often represented known MLL-AF4 targets genes. Genes that were up-regulated in response to the repression of MLL-AF4 and MLL-ENL often represented genes typically silenced by promoter hypermethylation in MLL-rearranged infant ALL. Genes that were aff

    Mean-field description of collapsing and exploding Bose-Einstein condensates

    Full text link
    We perform numerical simulation based on the time-dependent mean-field Gross-Pitaevskii equation to understand some aspects of a recent experiment by Donley et al. on the dynamics of collapsing and exploding Bose-Einstein condensates of 85^{85}Rb atoms. They manipulated the atomic interaction by an external magnetic field via a Feshbach resonance, thus changing the repulsive condensate into an attractive one and vice versa. In the actual experiment they changed suddenly the scattering length of atomic interaction from positive to a large negative value on a pre-formed condensate in an axially symmetric trap. Consequently, the condensate collapses and ejects atoms via explosion. We find that the present mean-field analysis can explain some aspects of the dynamics of the collapsing and exploding Bose-Einstein condensates.Comment: 9 Latex pages, 10 ps and eps files, version accepted in Physical Review A, minor changes mad

    Kondo effect in systems with dynamical symmetries

    Full text link
    This paper is devoted to a systematic exposure of the Kondo physics in quantum dots for which the low energy spin excitations consist of a few different spin multiplets ∣SiMi>|S_{i}M_{i}>. Under certain conditions (to be explained below) some of the lowest energy levels ESiE_{S_{i}} are nearly degenerate. The dot in its ground state cannot then be regarded as a simple quantum top in the sense that beside its spin operator other dot (vector) operators Rn{\bf R}_{n} are needed (in order to fully determine its quantum states), which have non-zero matrix elements between states of different spin multiplets ≠0 \ne 0. These "Runge-Lenz" operators do not appear in the isolated dot-Hamiltonian (so in some sense they are "hidden"). Yet, they are exposed when tunneling between dot and leads is switched on. The effective spin Hamiltonian which couples the metallic electron spin s{\bf s} with the operators of the dot then contains new exchange terms, Jns⋅RnJ_{n} {\bf s} \cdot {\bf R}_{n} beside the ubiquitous ones Jis⋅SiJ_{i} {\bf s}\cdot {\bf S}_{i}. The operators Si{\bf S}_{i} and Rn{\bf R}_{n} generate a dynamical group (usually SO(n)). Remarkably, the value of nn can be controlled by gate voltages, indicating that abstract concepts such as dynamical symmetry groups are experimentally realizable. Moreover, when an external magnetic field is applied then, under favorable circumstances, the exchange interaction involves solely the Runge-Lenz operators Rn{\bf R}_{n} and the corresponding dynamical symmetry group is SU(n). For example, the celebrated group SU(3) is realized in triple quantum dot with four electrons.Comment: 24 two-column page
    • …
    corecore