219 research outputs found
Glueball spectrum based on a rigorous three-dimensional relativistic equation for two-gluon bound states II: calculation of the glueball spectrum
In the preceding paper, a rigorous three-dimensional relativistic equation
for two-gluon bound states was derived from the QCD with massive gluons and
represented in the angular momentum representation. In order to apply this
equation to calculate the glueball spectrum, in this paper, the equation is
recast in an equivalent three-dimensional relativistic equation satisfied by
the two-gluon positive energy state amplitude. The interaction Hamiltonian in
the equation is exactly derived and expressed as a perturbative series. The
first term in the series describes the one-gluon exchange interaction which
includes fully the retardation effect in it. This term plus the linear
confining potential are chosen to be the interaction Hamiltonian and employed
in the practical calculation. With the integrals containing three and four
spherical Bessel functions in the QCD vertices being analytically calculated,
the interaction Hamiltonian is given an explicit expression in the angular
momentum representation. Numerically solving the relativistic equation with
taking the contributions arising from the retardation effect and the
longitudinal mode of gluon fields into account, a set of masses for the
and glueball states are
obtained and are in fairly good agreement with the predictions given by the
lattice simulatio
Glueball spectrum based on a rigorous three-dimensional relativistic equation for two-gluon bound states I: Derivation of the relativistic equation
A rigorous three-dimensional relativistic equation satisfied by two-gluon
bound states is derived from the QCD with massive gluons. With the gluon fields
and the quark fields being expanded in terms of the gluon multipole fields and
the spherical Dirac spinors respectively, the equation is well established in
the angular momentum representation and hence is much convenient for solving
the problem of two-gluon glueball spectra. In particular, the interaction
kernel in the equation is exactly derived and given a closed expression which
includes all the interactions taking place in the two-gluon glueballs. The
kernel contains only a few types of Green's functions and commutators.
Therefore, it is not only easily calculated by the perturbation method, but
also provides a suitable basis for nonperturbative investigations
Theoretical study of incoherent phi photoproduction on a deuteron target
We study the photoproduction of phi mesons in deuteron, paying attention to
the modification of the cross section from bound protons to the free ones with
the aim of comparing with recent results at LEPS. For this purpose we take into
account Fermi motion in single scattering and rescattering of the phi to
account for phi absorption on a second nucleon as well as the rescattering of
the proton. We find that the contribution of the double scattering is much
smaller than the typical cross section of gamma p to phi p in free space, which
implies a very small screening of the phi production in deuteron. The
contribution from the proton rescattering, on the other hand, is found to be
not negligible compared to the cross section of gamma p to phi p in free space,
and leads to a moderate reduction of the phi photoproduction cross section on a
deuteron at forward angles if LEPS set up is taken into account. The Fermi
motion allows contribution of the single scattering in regions forbidden by
phase space in the free case. In particular, we find that for momentum
transferred squared close to the maximum value, the Fermi motion changes
drastically the shape of d sigma / dt, to the point that the ratio of this
cross section to the free one becomes very sensitive to the precise value of t
chosen, or the size of the bin used in an experimental analysis. Hence, this
particular region of t does not seem the most indicated to find effects of a
possible phi absorption in the deuteron. This reaction is studied theoretically
as a function of t and the effect of the experimental angular cuts at LEPS is
also discussed, providing guidelines for future experimental analyses of the
reaction.Comment: 17 pages, 16 figure
Observing many body effects on lepton pair production from low mass enhancement and flow at RHIC and LHC energies
The spectral function at finite temperature calculated using the
real-time formalism of thermal field theory is used to evaluate the low mass
dilepton spectra. The analytic structure of the propagator is studied
and contributions to the dilepton yield in the region below the bare
peak from the different cuts in the spectral function are discussed. The
space-time integrated yield shows significant enhancement in the region below
the bare peak in the invariant mass spectra. It is argued that the
variation of the inverse slope of the transverse mass () distribution can
be used as an efficient tool to predict the presence of two different phases of
the matter during the evolution of the system. Sensitivity of the effective
temperature obtained from the slopes of the spectra to the medium effects
are studied
Structure of Fat Jets at the Tevatron and Beyond
Boosted resonances is a highly probable and enthusiastic scenario in any
process probing the electroweak scale. Such objects when decaying into jets can
easily blend with the cornucopia of jets from hard relative light QCD states.
We review jet observables and algorithms that can contribute to the
identification of highly boosted heavy jets and the possible searches that can
make use of such substructure information. We also review previous studies by
CDF on boosted jets and its measurements on specific jet shapes.Comment: invited review for a special "Top and flavour physics in the LHC era"
issue of The European Physical Journal C, we invite comments regarding
contents of the review; v2 added references and institutional preprint
number
Partial wave analysis of J/\psi \to \gamma \phi \phi
Using events collected in the BESII detector, the
radiative decay is
studied. The invariant mass distribution exhibits a near-threshold
enhancement that peaks around 2.24 GeV/.
A partial wave analysis shows that the structure is dominated by a
state () with a mass of
GeV/ and a width of GeV/. The
product branching fraction is: .Comment: 11 pages, 4 figures. corrected proof for journa
b-Jet Identification in the D0 Experiment
Algorithms distinguishing jets originating from b quarks from other jet
flavors are important tools in the physics program of the D0 experiment at the
Fermilab Tevatron p-pbar collider. This article describes the methods that have
been used to identify b-quark jets, exploiting in particular the long lifetimes
of b-flavored hadrons, and the calibration of the performance of these
algorithms based on collider data.Comment: submitted to Nuclear Instruments and Methods in Physics Research
Producing Slow Antihydrogen for a Test of CPT Symmetry with ATHENA
The ATHENA experiment at the Antiproton Decelerator facility at CERN aims at testing CPT symmetry with antihydrogen. An overview of the experiment, together with preliminary results of development towards the production of slow antihydrogen are reported.The ATHENA experiment at the Antiproton Decelerator facility at CERN aims at testing CPT symmetry with antihydrogen. An overview of the experiment, together with preliminary results of development towards the production of slow antihydrogen are reported.The ATHENA experiment at the Antiproton Decelerator facility at CERN aims at testing CPT symmetry with antihydrogen. An overview of the experiment, together with preliminary results of development towards the production of slow antihydrogen are reported.The ATHENA experiment at the Antiproton Decelerator facility at CERN aims at testing CPT symmetry with antihydrogen. An overview of the experiment, together with preliminary results of development towards the production of slow antihydrogen are reported
Search for scalar bottom quarks and third-generation leptoquarks in ppbar collisions at sqrt(s) = 1.96 TeV
We report the results of a search for pair production of scalar bottom quarks
(sbottom) and scalar third-generation leptoquarks in 5.2 fb-1 of ppbar
collisions at the D0 experiment of the Fermilab Tevatron Collider. Scalar
bottom quarks are assumed to decay to a neutralino and a quark, and we set
95% C.L. lower limits on their production in the (m_sbottom, m_neutralino) mass
plane such as m_sbottom>247 GeV for m_neutralino=0 and m_neutralino>110 GeV for
160<m_sbottom<200 GeV. The leptoquarks are assumed to decay to a tau neutrino
and a quark, and we set a 95% C.L. lower limit of 247 GeV on the mass of a
charge-1/3 third-generation scalar leptoquark.Comment: Published by Phys. Lett.
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
- …