219 research outputs found

    Glueball spectrum based on a rigorous three-dimensional relativistic equation for two-gluon bound states II: calculation of the glueball spectrum

    Full text link
    In the preceding paper, a rigorous three-dimensional relativistic equation for two-gluon bound states was derived from the QCD with massive gluons and represented in the angular momentum representation. In order to apply this equation to calculate the glueball spectrum, in this paper, the equation is recast in an equivalent three-dimensional relativistic equation satisfied by the two-gluon positive energy state amplitude. The interaction Hamiltonian in the equation is exactly derived and expressed as a perturbative series. The first term in the series describes the one-gluon exchange interaction which includes fully the retardation effect in it. This term plus the linear confining potential are chosen to be the interaction Hamiltonian and employed in the practical calculation. With the integrals containing three and four spherical Bessel functions in the QCD vertices being analytically calculated, the interaction Hamiltonian is given an explicit expression in the angular momentum representation. Numerically solving the relativistic equation with taking the contributions arising from the retardation effect and the longitudinal mode of gluon fields into account, a set of masses for the 0++,0+,1++,1+,2++0^{++},0^{-+},1^{++},1^{-+},2^{++} and 2+2^{-+\text{}} glueball states are obtained and are in fairly good agreement with the predictions given by the lattice simulatio

    Glueball spectrum based on a rigorous three-dimensional relativistic equation for two-gluon bound states I: Derivation of the relativistic equation

    Full text link
    A rigorous three-dimensional relativistic equation satisfied by two-gluon bound states is derived from the QCD with massive gluons. With the gluon fields and the quark fields being expanded in terms of the gluon multipole fields and the spherical Dirac spinors respectively, the equation is well established in the angular momentum representation and hence is much convenient for solving the problem of two-gluon glueball spectra. In particular, the interaction kernel in the equation is exactly derived and given a closed expression which includes all the interactions taking place in the two-gluon glueballs. The kernel contains only a few types of Green's functions and commutators. Therefore, it is not only easily calculated by the perturbation method, but also provides a suitable basis for nonperturbative investigations

    Theoretical study of incoherent phi photoproduction on a deuteron target

    Get PDF
    We study the photoproduction of phi mesons in deuteron, paying attention to the modification of the cross section from bound protons to the free ones with the aim of comparing with recent results at LEPS. For this purpose we take into account Fermi motion in single scattering and rescattering of the phi to account for phi absorption on a second nucleon as well as the rescattering of the proton. We find that the contribution of the double scattering is much smaller than the typical cross section of gamma p to phi p in free space, which implies a very small screening of the phi production in deuteron. The contribution from the proton rescattering, on the other hand, is found to be not negligible compared to the cross section of gamma p to phi p in free space, and leads to a moderate reduction of the phi photoproduction cross section on a deuteron at forward angles if LEPS set up is taken into account. The Fermi motion allows contribution of the single scattering in regions forbidden by phase space in the free case. In particular, we find that for momentum transferred squared close to the maximum value, the Fermi motion changes drastically the shape of d sigma / dt, to the point that the ratio of this cross section to the free one becomes very sensitive to the precise value of t chosen, or the size of the bin used in an experimental analysis. Hence, this particular region of t does not seem the most indicated to find effects of a possible phi absorption in the deuteron. This reaction is studied theoretically as a function of t and the effect of the experimental angular cuts at LEPS is also discussed, providing guidelines for future experimental analyses of the reaction.Comment: 17 pages, 16 figure

    Observing many body effects on lepton pair production from low mass enhancement and flow at RHIC and LHC energies

    Full text link
    The ρ\rho spectral function at finite temperature calculated using the real-time formalism of thermal field theory is used to evaluate the low mass dilepton spectra. The analytic structure of the ρ\rho propagator is studied and contributions to the dilepton yield in the region below the bare ρ\rho peak from the different cuts in the spectral function are discussed. The space-time integrated yield shows significant enhancement in the region below the bare ρ\rho peak in the invariant mass spectra. It is argued that the variation of the inverse slope of the transverse mass (MTM_T) distribution can be used as an efficient tool to predict the presence of two different phases of the matter during the evolution of the system. Sensitivity of the effective temperature obtained from the slopes of the MTM_T spectra to the medium effects are studied

    Structure of Fat Jets at the Tevatron and Beyond

    Full text link
    Boosted resonances is a highly probable and enthusiastic scenario in any process probing the electroweak scale. Such objects when decaying into jets can easily blend with the cornucopia of jets from hard relative light QCD states. We review jet observables and algorithms that can contribute to the identification of highly boosted heavy jets and the possible searches that can make use of such substructure information. We also review previous studies by CDF on boosted jets and its measurements on specific jet shapes.Comment: invited review for a special "Top and flavour physics in the LHC era" issue of The European Physical Journal C, we invite comments regarding contents of the review; v2 added references and institutional preprint number

    Partial wave analysis of J/\psi \to \gamma \phi \phi

    Get PDF
    Using 5.8×107J/ψ5.8 \times 10^7 J/\psi events collected in the BESII detector, the radiative decay J/ψγϕϕγK+KKS0KL0J/\psi \to \gamma \phi \phi \to \gamma K^+ K^- K^0_S K^0_L is studied. The ϕϕ\phi\phi invariant mass distribution exhibits a near-threshold enhancement that peaks around 2.24 GeV/c2c^{2}. A partial wave analysis shows that the structure is dominated by a 0+0^{-+} state (η(2225)\eta(2225)) with a mass of 2.240.02+0.030.02+0.032.24^{+0.03}_{-0.02}{}^{+0.03}_{-0.02} GeV/c2c^{2} and a width of 0.19±0.030.04+0.060.19 \pm 0.03^{+0.06}_{-0.04} GeV/c2c^{2}. The product branching fraction is: Br(J/ψγη(2225))Br(η(2225)ϕϕ)=(4.4±0.4±0.8)×104Br(J/\psi \to \gamma \eta(2225))\cdot Br(\eta(2225)\to \phi\phi) = (4.4 \pm 0.4 \pm 0.8)\times 10^{-4}.Comment: 11 pages, 4 figures. corrected proof for journa

    b-Jet Identification in the D0 Experiment

    Get PDF
    Algorithms distinguishing jets originating from b quarks from other jet flavors are important tools in the physics program of the D0 experiment at the Fermilab Tevatron p-pbar collider. This article describes the methods that have been used to identify b-quark jets, exploiting in particular the long lifetimes of b-flavored hadrons, and the calibration of the performance of these algorithms based on collider data.Comment: submitted to Nuclear Instruments and Methods in Physics Research

    Producing Slow Antihydrogen for a Test of CPT Symmetry with ATHENA

    Get PDF
    The ATHENA experiment at the Antiproton Decelerator facility at CERN aims at testing CPT symmetry with antihydrogen. An overview of the experiment, together with preliminary results of development towards the production of slow antihydrogen are reported.The ATHENA experiment at the Antiproton Decelerator facility at CERN aims at testing CPT symmetry with antihydrogen. An overview of the experiment, together with preliminary results of development towards the production of slow antihydrogen are reported.The ATHENA experiment at the Antiproton Decelerator facility at CERN aims at testing CPT symmetry with antihydrogen. An overview of the experiment, together with preliminary results of development towards the production of slow antihydrogen are reported.The ATHENA experiment at the Antiproton Decelerator facility at CERN aims at testing CPT symmetry with antihydrogen. An overview of the experiment, together with preliminary results of development towards the production of slow antihydrogen are reported

    Search for scalar bottom quarks and third-generation leptoquarks in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We report the results of a search for pair production of scalar bottom quarks (sbottom) and scalar third-generation leptoquarks in 5.2 fb-1 of ppbar collisions at the D0 experiment of the Fermilab Tevatron Collider. Scalar bottom quarks are assumed to decay to a neutralino and a bb quark, and we set 95% C.L. lower limits on their production in the (m_sbottom, m_neutralino) mass plane such as m_sbottom>247 GeV for m_neutralino=0 and m_neutralino>110 GeV for 160<m_sbottom<200 GeV. The leptoquarks are assumed to decay to a tau neutrino and a bb quark, and we set a 95% C.L. lower limit of 247 GeV on the mass of a charge-1/3 third-generation scalar leptoquark.Comment: Published by Phys. Lett.

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters
    corecore