22 research outputs found

    A simple variational approach to the quantum Frenkel-Kontorova model

    Full text link
    We present a simple and complete variational approach to the one-dimensional quantum Frenkel-Kontorova model. Dirac's time-dependent variational principle is adopted together with a Hatree-type many-body trial wavefunction for the atoms. The single-particle state is assumed to have the Jackiw-Kerman form. We obtain an effective classical Hamiltonian for the system which is simple enough for a complete numerical solution for the static ground state of the model. Numerical results show that our simple approach captures the essence of the quantum effects first observed in quantum Monte Carlo studies.Comment: 12 pages, 2 figure

    Surface Roughness and Effective Stick-Slip Motion

    Get PDF
    The effect of random surface roughness on hydrodynamics of viscous incompressible liquid is discussed. Roughness-driven contributions to hydrodynamic flows, energy dissipation, and friction force are calculated in a wide range of parameters. When the hydrodynamic decay length (the viscous wave penetration depth) is larger than the size of random surface inhomogeneities, it is possible to replace a random rough surface by effective stick-slip boundary conditions on a flat surface with two constants: the stick-slip length and the renormalization of viscosity near the boundary. The stick-slip length and the renormalization coefficient are expressed explicitly via the correlation function of random surface inhomogeneities. The effective stick-slip length is always negative signifying the effective slow-down of the hydrodynamic flows by the rough surface (stick rather than slip motion). A simple hydrodynamic model is presented as an illustration of these general hydrodynamic results. The effective boundary parameters are analyzed numerically for Gaussian, power-law and exponentially decaying correlators with various indices. The maximum on the frequency dependence of the dissipation allows one to extract the correlation radius (characteristic size) of the surface inhomogeneities directly from, for example, experiments with torsional quartz oscillators.Comment: RevTeX4, 14 pages, 3 figure

    On Born approximation in black hole scattering

    Full text link
    A massless field propagating on spherically symmetric black hole metrics such as the Schwarzschild, Reissner-Nordstr\"{o}m and Reissner-Nordstr\"{o}m-de Sitter backgrounds is considered. In particular, explicit formulae in terms of transcendental functions for the scattering of massless scalar particles off black holes are derived within a Born approximation. It is shown that the conditions on the existence of the Born integral forbid a straightforward extraction of the quasi normal modes using the Born approximation for the scattering amplitude. Such a method has been used in literature. We suggest a novel, well defined method, to extract the large imaginary part of quasinormal modes via the Coulomb-like phase shift. Furthermore, we compare the numerically evaluated exact scattering amplitude with the Born one to find that the approximation is not very useful for the scattering of massless scalar, electromagnetic as well as gravitational waves from black holes

    Stick-slip motions in the friction force microscope: Effects of tip compliance

    No full text
    When a microcantilever with a nanoscale tip is scanned laterally over a surface to measure the nanoscale frictional forces, the onset of stick-slip tip motions is an extremely important phenomenon that signals the onset of lateral friction forces. In this article, we investigate theoretically the influence of tip and microcantilever compliance on this phenomenon. We show that static considerations alone cannot predict uniquely the onset of single or multiple atom slip events. Instead, the nonlinear dynamics of the tip during a slip event need to be carefully investigated to determine if the tip evolves to a single or multiple atom stick-slip motions. The results suggest that the relative compliances of the tip and microcantilever can be engineered to induce single or multiple atom stick-slip events and thus control lateral friction forces at the nanoscale
    corecore