256 research outputs found
Modeling magnetospheric fields in the Jupiter system
The various processes which generate magnetic fields within the Jupiter
system are exemplary for a large class of similar processes occurring at other
planets in the solar system, but also around extrasolar planets. Jupiter's
large internal dynamo magnetic field generates a gigantic magnetosphere, which
is strongly rotational driven and possesses large plasma sources located deeply
within the magnetosphere. The combination of the latter two effects is the
primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the
only known moon with an intrinsic dynamo magnetic field, which generates a
mini-magnetosphere located within Jupiter's larger magnetosphere including two
auroral ovals. Ganymede's magnetosphere is qualitatively different compared to
the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings
similar to most of the extrasolar planets which orbit their host stars within
0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres
presented here provide quantitative insight into the processes that maintain
these magnetospheres. Jupiter's magnetospheric field is approximately
time-periodic at the locations of Jupiter's moons and induces secondary
magnetic fields in electrically conductive layers such as subsurface oceans. In
the case of Ganymede, these secondary magnetic fields influence the oscillation
of the location of its auroral ovals. Based on dedicated Hubble Space Telescope
observations, an analysis of the amplitudes of the auroral oscillations
provides evidence that Ganymede harbors a subsurface ocean. Callisto in
contrast does not possess a mini-magnetosphere, but still shows a perturbed
magnetic field environment. Callisto's ionosphere and atmospheric UV emission
is different compared to the other Galilean satellites as it is primarily been
generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis
Effectiveness of Prenatal Tetanus, Diphtheria, Acellular Pertussis Vaccination in the Prevention of Infant Pertussis in the U.S.
Introduction: It is recommended that all pregnant women in the U.S. receive tetanus, diphtheria, acellular pertussis (Tdap) immunization to prevent infant pertussis. This study's objective was to examine the clinical effectiveness of prenatal Tdap, and whether effectiveness varies by gestational age at immunization. Methods: A nationwide cohort study of pregnant women with deliveries in 2010–2014 and their infants was performed. Commercial insurance claims data were analyzed in 2016–2017 to identify Tdap receipt by the pregnant women, and hospitalizations and outpatient visits for pertussis in their infants until the infants reached 18 months of age. Pertussis occurrence was compared between infants of mothers who received prenatal Tdap (overall and stratified by gestational age at administration) and infants of unvaccinated mothers. Results: There were 675,167 mother–infant pairs in the cohort. Among infants whose mothers received prenatal Tdap, the rate of pertussis was 43% lower (hazard ratio=0.57, 95% CI=0.35, 0.92) than infants whose mothers did not receive prenatal or postpartum Tdap; this reduction was consistent across pertussis definitions (hazard ratio for inpatient-only pertussis=0.32, 95% CI=0.11, 0.91). Pertussis rates were also lower for infants whose mothers received Tdap during the third trimester. Infants whose mothers received Tdap at <27 weeks of gestation did not experience reductions in pertussis rates (hazard ratio for pertussis=1.10, 95% CI=0.54, 2.25). Conclusions: Infants of mothers who received prenatal Tdap experienced half the rate of pertussis as compared with infants of unimmunized mothers. These results do not provide evidence to support changing the currently recommended timing of Tdap administration in pregnancy
Predictors of low uptake of prenatal tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis immunization in privately insured women in the United States
OBJECTIVE: To examine the uptake of prenatal tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) immunization among pregnant women in the United States. METHODS: Using MarketScan data, we conducted a historical cohort study among pregnant women with employer-based commercial insurance in the United States who delivered between January 1, 2010, and December 31, 2014. We examined temporal trends of uptake, predictors of uptake, and timing of Tdap immunization. RESULTS: Among 1,222,384 eligible pregnancies in 1,147,711 women, receipt of prenatal Tdap immunization increased from 0.0% of women who delivered in January 2010 to 9.8% who delivered in October 2012 (the date of the recommendation by the Advisory Committee on Immunization Practices for Tdap during every pregnancy) to 44.4% who delivered in December 2014. Among women who received Tdap during pregnancy, the majority were immunized between 27 weeks and 36 6/7 weeks of gestation per the Advisory Committee on Immunization Practices recommendation. In multivariable analyses among women who delivered between November 2012 and December 2014, rates of prenatal Tdap immunization were lower for women younger than 25 years of age (eg, 20-24 compared with 30-34 years rate ratio [RR] 0.83, 95% confidence interval [CI] 0.85-0.88), with other children (eg, three compared with zero children: RR 0.86, 95% CI 0.84-0.88), residing in the South compared with the Midwest (RR 0.81, 95% CI 0.80-0.82), or with emergency department visits in early pregnancy (RR 0.93, 95% CI 0.92-0.95). The proportion of pregnant women who received prenatal Tdap increased with increasing gestational age at birth. CONCLUSION: By the end of 2014, fewer than half of pregnant women in the United States were receiving prenatal Tdap immunization. Implementation and dissemination strategies are needed to increase Tdap coverage among pregnant women, especially those who are young, have other children, or reside in the South
Spatial prediction of the concentration of selenium (Se) in grain across part of Amhara Region, Ethiopia
Grain and soil were sampled across a large part of Amhara, Ethiopia in a study motivated by prior evidence of selenium (Se) deficiency in the Region's population. The grain samples (teff, Eragrostis tef, and wheat, Triticum aestivum) were analysed for concentration of Se and the soils were analysed for various properties, including Se concentration measured in different extractants. Predictive models for concentration of Se in the respective grains were developed, and the predicted values, along with observed concentrations in the two grains were represented by a multivariate linear mixed model in which selected covariates, derived from remote sensor observations and a digital elevation model, were included as fixed effects. In all modelling steps the selection of predictors was done using false discovery rate control, to avoid over-fitting, and using an α-investment procedure to maximize the statistical power to detect significant relationships by ordering the tests in a sequence based on scientific understanding of the underlying processes likely to control Se concentration in grain. Cross-validation indicated that uncertainties in the empirical best linear unbiased predictions of the Se concentration in both grains were well-characterized by the prediction error variances obtained from the model. The predictions were displayed as maps, and their uncertainty was characterized by computing the probability that the true concentration of Se in grain would be such that a standard serving would not provide the recommended daily allowance of Se. The spatial variation of grain Se was substantial, concentrations in wheat and teff differed but showed the same broad spatial pattern. Such information could be used to target effective interventions to address Se deficiency, and the general procedure used for mapping could be applied to other micronutrients and crops in similar settings
Development and validation of a recommended checklist for assessment of surgical videos quality: the LAParoscopic surgery Video Educational GuidelineS (LAP-VEGaS) video assessment tool
Introduction: There has been a constant increase in the number of published surgical videos with preference for open-access sources, but the proportion of videos undergoing peer-review prior to publication has markedly decreased, raising questions over quality of the educational content presented. The aim of this study was the development and validation of a standard framework for the appraisal of surgical videos submitted for presentation and publication, the LAParoscopic surgery Video Educational GuidelineS (LAP-VEGaS) video assessment tool. Methods: An international committee identified items for inclusion in the LAP-VEGaS video assessment tool and finalised the marking score utilising Delphi methodology. The tool was finally validated by anonymous evaluation of selected videos by a group of validators not involved in the tool development. Results: 9 items were included in the LAP-VEGaS video assessment tool, with every item scoring from 0 (item not presented in the video) to 2 (item extensively presented in the video), with a total marking score ranging from 0 to 18. The LAP-VEGaS video assessment tool resulted highly accurate in identifying and selecting videos for acceptance for conference presentation and publication, with high level of internal consistency and generalisability. Conclusions: We propose that peer review in adherence to the LAP-VEGaS video assessment tool could enhance the overall quality of published video outputs. Graphic Abstract: [Figure not available: see fulltext.]
Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events
The - oscillation frequency has been measured with a sample of
23 million \B\bar B pairs collected with the BABAR detector at the PEP-II
asymmetric B Factory at SLAC. In this sample, we select events in which both B
mesons decay semileptonically and use the charge of the leptons to identify the
flavor of each B meson. A simultaneous fit to the decay time difference
distributions for opposite- and same-sign dilepton events gives ps.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
Identification of common genetic risk variants for autism spectrum disorder
Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Peer reviewe
Genome-wide by Environment Interaction Studies of Depressive Symptoms and Psychosocial Stress in UK Biobank and Generation Scotland
Stress is associated with poorer physical and mental health. To improve our understanding of this link, we performed genome-wide association studies (GWAS) of depressive symptoms and genome-wide by environment interaction studies (GWEIS) of depressive symptoms and stressful life events (SLE) in two UK population-based cohorts (Generation Scotland and UK Biobank). No SNP was individually significant in either GWAS, but gene-based tests identified six genes associated with depressive symptoms in UK Biobank (DCC, ACSS3, DRD2, STAG1, FOXP2 and KYNU; p < 2.77 x 10(-6)). Two SNPs with genome-wide significant GxE effects were identified by GWEIS in Generation Scotland: rs12789145 (53-kb downstream PIWIL4; p = 4.95 x 10(-9); total SLE) and rs17070072 (intronic to ZCCHC2; p = 1.46 x 10(-8); dependent SLE). A third locus upstream CYLC2 (rs12000047 and rs12005200, p < 2.00 x 10(-8); dependent SLE) when the joint effect of the SNP main and GxE effects was considered. GWEIS gene-based tests identified: MTNR1B with GxE effect with dependent SLE in Generation Scotland; and PHF2 with the joint effect in UK Biobank (p < 2.77 x 10(-6)). Polygenic risk scores (PRSs) analyses incorporating GxE effects improved the prediction of depressive symptom scores, when using weights derived from either the UK Biobank GWAS of depressive symptoms (p = 0.01) or the PGC GWAS of major depressive disorder (p = 5.91 x 10(-3)). Using an independent sample, PRS derived using GWEIS GxE effects provided evidence of shared aetiologies between depressive symptoms and schizotypal personality, heart disease and COPD. Further such studies are required and may result in improved treatments for depression and other stress-related conditions
Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns
Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike’s information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk
- …