143 research outputs found
Molecular characterization of thioester-containing proteins in Biomphalaria glabrata and their differential gene expression upon Schistosoma mansoni exposure
Schistosomiasis is a disease caused by trematode parasites of the genus Schistosoma that affects approximately 200 million people worldwide. Schistosomiasis has been a persistent problem in endemic areas as there is no vaccine available, currently used anti-helmintic medications do not prevent reinfection, and most concerning, drug resistance has been documented in laboratory and field isolates. Thus, alternative approaches to curtail this human disease are warranted. Understanding the immunobiology of the obligate intermediate host of these parasites, which include the freshwater snail Biomphalaria glabrata, may facilitate the development of novel methods to stop or reduce transmission to humans. Molecules from the thioester-containing protein (TEP) superfamily have been shown to be involved in immunological functions in many animals including corals and humans. In this study we identified, characterized, and compared TEP transcripts and their expression upon S. mansoni exposure in resistant and susceptible strains of B. glabrata snails. Results showed the expression of 11 unique TEPs in B. glabrata snails. These transcripts present high sequence identity at the nucleotide and putative amino acid levels between susceptible and resistant strains. Further analysis revealed differences in several TEPs’ constitutive expression levels between resistant and susceptible snail strains, with C3-1, C3-3, and CD109 having higher constitutive expression levels in the resistant (BS90) strain, whereas C3-2 and TEP-1 showed higher constitutive expression levels in the susceptible (NMRI) strain. Furthermore, TEP-specific response to S. mansoni miracidia exposure reiterated their differential expression, with resistant snails upregulating the expression of both TEP-4 and TEP-3 at 2 h and 48 h post-exposure, respectively. Further understanding the diverse TEP genes and their functions in invertebrate animal vectors will not only expand our knowledge in regard to this ancient family of immune proteins, but also offer the opportunity to identify novel molecular targets that could aid in the efforts to develop control methods to reduce schistosomiasis transmission
The local adsorption geometry of benzenethiolate on Cu(1 0 0)
The local adsorption geometry of benzenethiolate in the ordered c(2 × 6) phase on Cu(1 0 0) has been investigated by a combination of S K-edge near-edge X-ray absorption fine structure (NEXAFS), normal incidence X-ray standing waves (NIXSW) and S 1s scanned-energy mode photoelectron diffraction (PhD). NEXAFS and PhD show that the molecular plane is tilted from the surface normal by 20 ± 15°, while NIXSW clearly identifies the S head-group as occupying the four-fold coordinated hollow sites. PhD shows the S atoms lies 1.34 ± 0.04 Å above the outermost Cu atomic layer, leading to a Cu–S bondlength of 2.25 ± 0.02 Å. The combination of the PhD and NIXSW results shows the Cu surface layer has an outward relaxation of 0.15 ± 0.06 Å. Possible origins for this large adsorbate-induced relaxation are discussed
Anisotropic exchange interaction of localized conduction-band electrons in semiconductor structures
The spin-orbit interaction in semiconductors is shown to result in an
anisotropic contribution into the exchange Hamiltonian of a pair of localized
conduction-band electrons. The anisotropic exchange interaction exists in
semiconductor structures which are not symmetric with respect to spatial
inversion, for instance in bulk zinc-blend semiconductors. The interaction has
both symmetric and antisymmetric parts with respect to permutation of spin
components. The antisymmetric (Dzyaloshinskii-Moriya) interaction is the
strongest one. It contributes significantly into spin relaxation of localized
electrons; in particular, it governs low-temperature spin relaxation in n-GaAs
with the donor concentration near 10^16cm-3. The interaction must be allowed
for in designing spintronic devices, especially spin-based quantum computers,
where it may be a major source of decoherence and errors
Homodyne detection for measuring internal quantum correlations of optical pulses
A new method is described for determining the quantum correlations at
different times in optical pulses by using balanced homodyne detection. The
signal pulse and sequences of ultrashort test pulses are superimposed, where
for chosen distances between the test pulses their relative phases and
intensities are varied from measurement to measurement. The correlation
statistics of the signal pulse is obtained from the time-integrated difference
photocurrents measured.Comment: 7 pages, A4.sty include
Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy beta and nuclear recoils in liquid argon with DEAP-1
The DEAP-1 low-background liquid argon detector was used to measure
scintillation pulse shapes of electron and nuclear recoil events and to
demonstrate the feasibility of pulse-shape discrimination (PSD) down to an
electron-equivalent energy of 20 keV.
In the surface dataset using a triple-coincidence tag we found the fraction
of beta events that are misidentified as nuclear recoils to be (90% C.L.) for energies between 43-86 keVee and for a nuclear recoil
acceptance of at least 90%, with 4% systematic uncertainty on the absolute
energy scale. The discrimination measurement on surface was limited by nuclear
recoils induced by cosmic-ray generated neutrons. This was improved by moving
the detector to the SNOLAB underground laboratory, where the reduced background
rate allowed the same measurement with only a double-coincidence tag.
The combined data set contains events. One of those, in the
underground data set, is in the nuclear-recoil region of interest. Taking into
account the expected background of 0.48 events coming from random pileup, the
resulting upper limit on the electronic recoil contamination is
(90% C.L.) between 44-89 keVee and for a nuclear recoil
acceptance of at least 90%, with 6% systematic uncertainty on the absolute
energy scale.
We developed a general mathematical framework to describe PSD parameter
distributions and used it to build an analytical model of the distributions
observed in DEAP-1. Using this model, we project a misidentification fraction
of approx. for an electron-equivalent energy threshold of 15 keV for
a detector with 8 PE/keVee light yield. This reduction enables a search for
spin-independent scattering of WIMPs from 1000 kg of liquid argon with a
WIMP-nucleon cross-section sensitivity of cm, assuming
negligible contribution from nuclear recoil backgrounds.Comment: Accepted for publication in Astroparticle Physic
Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER)
A multi-purpose fixed-target experiment using the proton and lead-ion beams
of the LHC was recently proposed by Brodsky, Fleuret, Hadjidakis and Lansberg,
and here we concentrate our study on some issues related to the spin physics
part of this project (referred to as AFTER). We study the nucleon spin
structure through and processes with a fixed-target experiment using
the LHC proton beams, for the kinematical region with 7 TeV proton beams at the
energy in center-of-mass frame of two nucleons GeV. We calculate
and estimate the azimuthal asymmetries of unpolarized and
dilepton production processes in the Drell--Yan continuum region and at the
-pole. We also calculate the , and
azimuthal asymmetries of and dilepton production
processes with the target proton and deuteron longitudinally or transversally
polarized in the Drell--Yan continuum region and around resonances region.
We conclude that it is feasible to measure these azimuthal asymmetries,
consequently the three-dimensional or transverse momentum dependent parton
distribution functions (3dPDFs or TMDs), at this new AFTER facility.Comment: 15 pages, 40 figures. Version accepted for publication in EPJ
The Release of Cytochrome c from Mitochondria during Apoptosis of NGF-deprived Sympathetic Neurons Is a Reversible Event
During apoptosis induced by various stimuli, cytochrome c is released from mitochondria into the cytosol where it participates in caspase activation. This process has been proposed to be an irreversible consequence of mitochondrial permeability transition pore opening, which leads to mitochondrial swelling and rupture of the outer mitochondrial membrane. Here we present data demonstrating that NGF-deprived sympathetic neurons protected from apoptosis by caspase inhibitors possess mitochondria which, though depleted of cytochrome c and reduced in size, remained structurally intact as viewed by electron microscopy. After re-exposure of neurons to NGF, mitochondria recovered their normal size and their cytochrome c content, by a process requiring de novo protein synthesis. Altogether, these data suggest that depletion of cytochrome c from mitochondria is a controlled process compatible with function recovery. The ability of sympathetic neurons to recover fully from trophic factor deprivation provided irreversible caspase inhibitors have been present during the insult period, has therapeutical implications for a number of acute neuropathologies
A new measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target
New high precision measurements of the Collins and Sivers asymmetries of
charged hadrons produced in deep-inelastic scattering of muons on a
transversely polarised 6LiD target are presented. The data were taken in 2003
and 2004 with the COMPASS spectrometer using the muon beam of the CERN SPS at
160 GeV/c. Both the Collins and Sivers asymmetries turn out to be compatible
with zero, within the present statistical errors, which are more than a factor
of 2 smaller than those of the published COMPASS results from the 2002 data.
The final results from the 2002, 2003 and 2004 runs are compared with naive
expectations and with existing model calculations.Comment: 40 pages, 28 figure
A multi-species synthesis of physiological mechanisms in drought-induced tree mortality
Widespread tree mortality associated with drought 92 has been observed on all forested continents, and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water, and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analyzed across species and biomes using a standardized physiological framework. Here we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function
A multi-species synthesis of physiological mechanisms in drought-induced tree mortality
Widespread tree mortality associated with drought 92 has been observed on all forested continents, and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water, and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analyzed across species and biomes using a standardized physiological framework. Here we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function
- …