26 research outputs found
U(VI) Reduction at the Nano, Meso and Meter Scale: Concomitant Transition from Simpler to More Complex Biogeochemical Processes
Reduction of aqueous hexavalent U(VI) to the sparingly soluble nanoparticulate mineral uraninite [UO2] represents a promising strategy for the in situ immobilization of uranium in contaminated subsurface sediments and groundwater. Studies related to uranium reduction have been extensively carried out at various scales ranging from nano to meso to the meter scale with varying degrees of success. While nanoscale processes involving simple two-electron transfer reactions such as enzymatic microbial U(VI) reduction results in biogenic UO2 formation, mesoscale processes involving minerals and U(VI) are a step up in complexity and have shown varying results ranging from partial uranium reduction to the formation of mixed U(IV)/U(V) species. Although nano- and meso-scale biogeochemical processes have been helpful in predicting the contaminant dynamics at the meter scale, their occurrence is not necessarily apparent in soils and aquifers given the enormous volume of contaminated groundwater to be remediated, among other factors. The formation and long-term stability of biologically reduced uranium at the meter scale is also determined in addition by the complex interplay of aqueous geochemistry, hydrology, soil and sediment mineralogy and microbial community dynamics. For instance, indigenous subsurface microbes often encounter multiple electron acceptors in heterogeneous environments during biostimulation and can catalyze the formation of various reactive biogenic minerals. In such cases, abiotic interactions between U(VI) and reactive biogenic minerals is potentially important because the success of a remediation strategy is contingent upon the speciation of reduced uranium. This presentation will give an overview of uranium reduction ranging from simple nanoscale biological processes to increasingly complex meso and meter scale processes involving abiotic interactions between aqueous uranium and nano-biogenic minerals and the effect of mineralogy and aqueous geochemistry on the speciation of reduced uranium
U(VI) Reduction at the Nano, Meso and Meter Scale: Concomitant Transition from Simpler to More Complex Biogeochemical Processes
Reduction of aqueous hexavalent U(VI) to the sparingly soluble nanoparticulate mineral uraninite [UO2] represents a promising strategy for the in situ immobilization of uranium in contaminated subsurface sediments and groundwater. Studies related to uranium reduction have been extensively carried out at various scales ranging from nano to meso to the meter scale with varying degrees of success. While nanoscale processes involving simple two-electron transfer reactions such as enzymatic microbial U(VI) reduction results in biogenic UO2 formation, mesoscale processes involving minerals and U(VI) are a step up in complexity and have shown varying results ranging from partial uranium reduction to the formation of mixed U(IV)/U(V) species. Although nano- and meso-scale biogeochemical processes have been helpful in predicting the contaminant dynamics at the meter scale, their occurrence is not necessarily apparent in soils and aquifers given the enormous volume of contaminated groundwater to be remediated, among other factors. The formation and long-term stability of biologically reduced uranium at the meter scale is also determined in addition by the complex interplay of aqueous geochemistry, hydrology, soil and sediment mineralogy and microbial community dynamics. For instance, indigenous subsurface microbes often encounter multiple electron acceptors in heterogeneous environments during biostimulation and can catalyze the formation of various reactive biogenic minerals. In such cases, abiotic interactions between U(VI) and reactive biogenic minerals is potentially important because the success of a remediation strategy is contingent upon the speciation of reduced uranium. This presentation will give an overview of uranium reduction ranging from simple nanoscale biological processes to increasingly complex meso and meter scale processes involving abiotic interactions between aqueous uranium and nano-biogenic minerals and the effect of mineralogy and aqueous geochemistry on the speciation of reduced uranium
Recommended from our members
Assessment of Management Oxides for the Sorption of Radionuclides
Recent research has shown that certain manganese oxides have the ability to sorb aqueous metal cations much more efficiently than any of the naturally occurring iron oxides when normalized to surface area. This ability is, at least in part, related to the internal sites available in many manganese oxide structures, including those within tunnels and between sheets. Additionally, a new naturally-occurring manganese oxide structurally related to vernadite ({delta}-MnO{sub 2}), collected along the Clark Fork River in western Montana, USA, has shown the ability to sorb arsenate, an anionic complex. The potential for manganese oxides to sorb anions has made it an attractive material as a radionuclide ''getter''. According to the US Department of Energy's Total Systems Performance Assessment, technetium and iodine are two major anionic radionuclides contributing to the list of potential contaminants released from Yucca Mountain repository, Nevada, USA. These two radionuclides are extremely problematic because they are very mobile in the environment. This project involves running flow-through sorption experiments using rhenium (a surrogate for technetium) and stable iodine as sorbates and several synthetic manganese oxides, including birnessite, vernadite, cryptomelane, and possibly the new vernadite-like phase mentioned earlier, as sorbants. For all synthesis reactions, manganese (VII) salts are reduced to manganese (III,IV) oxides. The different oxides are produced from specific reductants and/or the addition of heat, followed by multiple washing steps. To verify that the proper phases have been synthesized, all oxides are analyzed using transmission electron microscopy (TEM) and powder X-ray diffraction (XRD). The sorption experiments will be run in flow-through reactors bearing the aqueous complex of interest, where solutions, at various temperatures, pH's, and ionic strengths, will pass through a bed of one of the manganese oxides. The effluent solution will be analyzed using aqueous spectroscopic methods and the reacted solids will be analyzed using microscopy (field emission scanning electron microscopy, FE-SEM; and TEM), structure analysis (XRD), bulk chemical spectroscopy (energy dispersive spectroscopy, EDS), and surface sensitive spectroscopy (X-ray photoelectron spectroscopy, XPS)
Nanominerals and Mineral Nanoparticles: More Clues as to How they Operate and the Chemistry they Perform at Nanometer to Global Scales
No abstract available
Nanominerals and Mineral Nanoparticles: More Clues as to How they Operate and the Chemistry they Perform at Nanometer to Global Scales
No abstract available
Biotic Controls on U(VI) Sequestration by Iron-Sulfides in Bioreduced Sediments
No abstract available
Recommended from our members
Using Macro- and Microscale Preservation in Vertebrate Fossils as Predictors for Molecular Preservation in Fluvial Environments
Exceptionally preserved fossils retain soft tissues and often the biomolecules that were present in an animal during its life. The majority of terrestrial vertebrate fossils are not traditionally considered exceptionally preserved, with fossils falling on a spectrum ranging from very well-preserved to poorly preserved when considering completeness, morphology and the presence of microstructures. Within this variability of anatomical preservation, high-quality macro-scale preservation (e.g., articulated skeletons) may not be reflected in molecular-scale preservation (i.e., biomolecules). Excavation of the Hayden Quarry (HQ; Chinle Formation, Ghost Ranch, NM, USA) has resulted in the recovery of thousands of fossilized vertebrate specimens. This has contributed greatly to our knowledge of early dinosaur evolution and paleoenvironmental conditions during the Late Triassic Period (~212 Ma). The number of specimens, completeness of skeletons and fidelity of osteohistological microstructures preserved in the bone all demonstrate the remarkable quality of the fossils preserved at this locality. Because the Hayden Quarry is an excellent example of good preservation in a fluvial environment, we have tested different fossil types (i.e., bone, tooth, coprolite) to examine the molecular preservation and overall taphonomy of the HQ to determine how different scales of preservation vary within a single locality. We used multiple high-resolution mass spectrometry techniques (TOF-SIMS, GC-MS, FT-ICR MS) to compare the fossils to unaltered bone from extant vertebrates, experimentally matured bone, and younger dinosaurian skeletal material from other fluvial environments. FT-ICR MS provides detailed molecular information about complex mixtures, and TOF-SIMS has high elemental spatial sensitivity. Using these techniques, we did not find convincing evidence of a molecular signal that can be confidently interpreted as endogenous, indicating that very good macro- and microscale preservation are not necessarily good predictors of molecular preservation. © 2022 by the authors.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]