1,225 research outputs found
Rotating Resonator-Oscillator Experiments to Test Lorentz Invariance in Electrodynamics
In this work we outline the two most commonly used test theories (RMS and
SME) for testing Local Lorentz Invariance (LLI) of the photon. Then we develop
the general framework of applying these test theories to resonator experiments
with an emphasis on rotating experiments in the laboratory. We compare the
inherent sensitivity factors of common experiments and propose some new
configurations. Finally we apply the test theories to the rotating cryogenic
experiment at the University of Western Australia, which recently set new
limits in both the RMS and SME frameworks [hep-ph/0506074].Comment: Submitted to Lecture Notes in Physics, 36 pages, minor modifications,
updated list of reference
Recent Experimental Tests of Special Relativity
We review our recent Michelson-Morley (MM) and Kennedy-Thorndike (KT)
experiment, which tests Lorentz invariance in the photon sector, and report
first results of our ongoing atomic clock test of Lorentz invariance in the
matter sector. The MM-KT experiment compares a cryogenic microwave resonator to
a hydrogen maser, and has set the most stringent limit on a number of
parameters in alternative theories to special relativity. We also report first
results of a test of Lorentz invariance in the SME (Standard Model Extension)
matter sector, using Zeeman transitions in a laser cooled Cs atomic fountain
clock. We describe the experiment together with the theoretical model and
analysis. Recent experimental results are presented and we give a first
estimate of components of the parameters of the SME matter
sector. A full analysis of systematic effects is still in progress, and will be
the subject of a future publication together with our final results. If
confirmed, the present limits would correspond to first ever measurements of
some components, and improvements by 11 and 14 orders of
magnitude on others.Comment: 29 pages. Contribution to Springer Lecture Notes, "Special Relativity
- Will it survive the next 100 years ?", Proceedings, Potsdam, 200
Quantum Interference between Impurities: Creating Novel Many-Body States in s-wave Superconductors
We demonstrate that quantum interference of electronic waves that are
scattered by multiple magnetic impurities in an s-wave superconductor gives
rise to novel bound states. We predict that by varying the inter-impurity
distance or the relative angle between the impurity spins, the states' quantum
numbers, as well as their distinct frequency and spatial dependencies, can be
altered. Finally, we show that the superconductor can be driven through
multiple local crossovers in which its spin polarization, , changes
between and 1.Comment: 4 pages, 4 figure
An improved optimization technique for estimation of solar photovoltaic parameters
The nonlinear current vs voltage (I-V) characteristics of solar PV make its modelling difficult. Optimization techniques are the best tool for identifying the parameters of nonlinear models. Even though, there are different optimization techniques used for parameter estimation of solar PV, still the best optimized results are not achieved to date. In this paper, Wind Driven Optimization (WDO) technique is proposed as the new method for identifying the parameters of solar PV. The accuracy and convergence time of the proposed method is compared with results of Pattern Search (PS), Genetic Algorithm (GA), and Simulated Annealing (SA) for single diode and double diode models of solar PV. Furthermore, for performance validation, the parameters obtained through WDO are compared with hybrid Bee Pollinator Flower Pollination Algorithm (BPFPA), Flower Pollination Algorithm (FPA), Generalized Oppositional Teaching Learning Based Optimization (GOTLBO), Artificial Bee Swarm Optimization (ABSO), and Harmony Search (HS). The obtained results clearly reveal that WDO algorithm can provide accurate optimized values with less number of iterations at different environmental conditions. Therefore, the WDO can be recommended as the best optimization algorithm for parameter estimation of solar PV
Electric-field dependent spin diffusion and spin injection into semiconductors
We derive a drift-diffusion equation for spin polarization in semiconductors
by consistently taking into account electric-field effects and nondegenerate
electron statistics. We identify a high-field diffusive regime which has no
analogue in metals. In this regime there are two distinct spin diffusion
lengths. Furthermore, spin injection from a ferromagnetic metal into a
semiconductor is enhanced by several orders of magnitude and spins can be
transported over distances much greater than the low-field spin diffusion
length.Comment: 5 pages, 3 eps figure
Spin injection through the depletion layer: a theory of spin-polarized p-n junctions and solar cells
A drift-diffusion model for spin-charge transport in spin-polarized {\it p-n}
junctions is developed and solved numerically for a realistic set of material
parameters based on GaAs. It is demonstrated that spin polarization can be
injected through the depletion layer by both minority and majority carriers,
making all-semiconductor devices such as spin-polarized solar cells and bipolar
transistors feasible. Spin-polarized {\it p-n} junctions allow for
spin-polarized current generation, spin amplification, voltage control of spin
polarization, and a significant extension of spin diffusion range.Comment: 4 pages, 3 figure
Thermodynamic Properties of the One-Dimensional Extended Quantum Compass Model in the Presence of a Transverse Field
The presence of a quantum critical point can significantly affect the
thermodynamic properties of a material at finite temperatures. This is
reflected, e.g., in the entropy landscape S(T; c) in the vicinity of a quantum
critical point, yielding particularly strong variations for varying the tuning
parameter c such as magnetic field. In this work we have studied the
thermodynamic properties of the quantum compass model in the presence of a
transverse field. The specific heat, entropy and cooling rate under an
adiabatic demagnetization process have been calculated. During an adiabatic
(de)magnetization process temperature drops in the vicinity of a field-induced
zero-temperature quantum phase transitions. However close to field-induced
quantum phase transitions we observe a large magnetocaloric effect
Mechanics: non-classical, non-quantum
A non-classical, non-quantum theory, or NCQ, is any fully consistent theory
that differs fundamentally from both the corresponding classical and quantum
theories, while exhibiting certain features common to both. Such theories are
of interest for two primary reasons. Firstly, NCQs arise prominently in
semi-classical approximation schemes. Their formal study may yield improved
approximation techniques in the near-classical regime. More importantly for the
purposes of this note, it may be possible for NCQs to reproduce quantum results
over experimentally tested regimes while having a well defined classical limit,
and hence are viable alternative theories. We illustrate an NCQ by considering
an explicit class of NCQ mechanics. Here this class will be arrived at via a
natural generalization of classical mechanics formulated in terms of a
probability density functional
Network development in biological gels: role in lymphatic vessel development
In this paper, we present a model that explains the prepatterning of lymphatic vessel morphology in collagen gels. This model is derived using the theory of two phase rubber material due to Flory and coworkers and it consists of two coupled fourth order partial differential equations describing the evolution of the collagen volume fraction, and the evolution of the proton concentration in a collagen implant; as described in experiments of Boardman and Swartz (Circ. Res. 92, 801–808, 2003). Using linear stability analysis, we find that above a critical level of proton concentration, spatial patterns form due to small perturbations in the initially uniform steady state. Using a long wavelength reduction, we can reduce the two coupled partial differential equations to one fourth order equation that is very similar to the Cahn–Hilliard equation; however, it has more complex nonlinearities and degeneracies. We present the results of numerical simulations and discuss the biological implications of our model
Spin oscillations in transient diffusion of a spin pulse in n-type semiconductor quantum wells
By studying the time and spatial evolution of a pulse of the spin
polarization in -type semiconductor quantum wells, we highlight the
importance of the off-diagonal spin coherence in spin diffusion and transport.
Spin oscillations and spin polarization reverse along the the direction of spin
diffusion in the absence of the applied magnetic field are predicted from our
investigation.Comment: 5 pages, 4 figures, accepted for publication in PR
- …