6 research outputs found

    Bovine glomerular basement membrane. Location and structure of the asparagine-linked oligosaccharide units and their potential role in the assembly of the 7 S collagen IV tetramer

    No full text
    Collagen IV contains an amino-terminal tetramerization domain (7 S) that is involved in aggregation and cross-linking as part of the process of self-assembly of the collagen IV matrix of basement membranes. We determined the structure and location of the Asn-linked oligosaccharides of the 7 S tetramer. Two glycopeptides, GP-1 and GP-2, were isolated from tryptic digests of the 7 S tetramer and were characterized. GP-1 and GP-2 are derived from the α1(IV) chain and the α2(IV) chain, respectively. Each glycopeptide contained one sequence, -Asn-Xaa-Thr-, which was shown to be N-glycosylated at Asn, corresponding to position 126 of the α1 chains and 138 of the α2 chain. 1H NMR spectroscopic analysis of the oligosaccharide is a biantennary N-acetyllactosamine type of N-linked oligosaccharide with a broad heterogeneity in the presence of the sugar residues at their nonreducing termini as indicated. [formula: see text] The location of the Asn-linked oligosaccharide units and Hyl-linked disaccharide units and their orientation with respect to the surface of the triple helix were calculated using two models. We conclude that both units are important determinants in the assembly of the 7 S tetramer

    Goodpasture syndrome. Localization of the epitope for the autoantibodies to the carboxyl-terminal region of the alpha 3(IV) chain of basement membrane collagen.

    No full text
    The autoantibodies of patients with Goodpasture syndrome are primarily targeted to the noncollagenous (NC1) domain of the alpha 3(IV) chain of basement membrane collagen (Saus, J., Wieslander, J., Langeveld, J. P. M., Quinones, S., and Hudson, B. G. (1988) J. Biol. Chem. 263, 13374-13380). In the present study, the location of the Goodpasture epitope in human alpha 3NC1 was determined, and its structure was partially characterized. This was achieved by identification of regions of alpha 3NC1 which are candidates for the epitope and which are structurally unique among the five known homologous NC1 domains (alpha 1-alpha 5); amino acids that are critical for Goodpasture antibody binding, by selective chemical modifications; and regions that are critical for Goodpasture antibody binding, by synthesis of 12 alpha 3NC1 peptides and measurement of their antibody binding capacity. The carboxyl-terminal region, residues 198-233, was identified as the most likely region for the epitope. By experiment, lysine and cysteine were identified as critical amino acids for antibody binding. Three synthetic peptides were found to inhibit Goodpasture antibody binding to alpha 3NC1 markedly: a 36-mer (residues 198-233), a 12-mer (residues 222-233), and a 5-mer (residues 229-233). Together, these results strongly indicate that the Goodpasture epitope is localized to the carboxyl-terminal region of alpha 3NC1, encompassing residues 198-233 as the primary antibody interaction site and that its structure is discontinuous. These findings provide a conceptual framework for future studies to elucidate a more complete epitope structure by sequential replacement of residues encompassing the epitope using cDNA expression products and peptides synthesized chemically
    corecore