15 research outputs found

    Molecular analysis of mxbD and mxbM, a putative sensor-regulator pair required for oxidation of methanol in Methylobacterium extorquens AM1

    No full text
    Five genes are thought to be required for transcription of methanol oxidation genes in Methylobacterium strains. These putative regulatory genes include mxcQE, which encode a putative sensor-regulator pair, and mxbDM and mxaB, whose functions are less well-understood. In this study, mxbDM in Methylobacterium extorquens AM1 were shown to be required for expression of a xylE transcriptional fusion to the structural gene for the large subunit of methanol dehydrogenase (mxaF), confirming the role of these genes in transcriptional regulation of mxaF. The nucleotide sequence suggests that mxbD encodes a histidine protein kinase with two transmembrane domains and that mxbM encodes a DNA-binding response regulator. A xylE transcriptional fusion to the putative mxbD promoter showed low-level expression in wild-type cells:grown on one-carbon (C<sub>1</sub>) compounds and no detectable expression in cells grown on succinate. Deletion analysis of this promoter construct showed that the region 229-129 bp upstream of the start of mxbD is required for expression. The expression of the mxbD-xylE fusion was examined in each of the five known regulatory mutant classes, xylE expression was reduced to non-detectable levels in MxcQ and MxcE mutants, but was not affected in the other regulatory mutants or in non-regulatory mutants defective in methanol oxidation. These results suggest a regulatory hierarchy in which the sensor-regulator pair MxcQE control expression of the sensor-regulator pair MxbDM, and MxbDM in turn control expression of a number of genes involved in methanol oxidation

    Characterization of Xanthobacter strains H4-14 and 25a and enzyme profiles after growth under autotrophic and heterotrophic conditions

    Get PDF
    All Xanthobacter strains studied are versatile autotrophic bacteria, able to grow on methanol and other substrates. Strain 25a, a yellow-pigmented, pleomorphic, Gram-negative bacterium, capable of autotrophic growth on methanol, formate, thiosulfate, and molecular hydrogen, was isolated from an enrichment culture inoculated with soil from a subtropical greenhouse. Subsequent studies showed that the organism also grows on a wide range of multicarbon substrates. Ammonia, nitrate and molecular nitrogen were used as nitrogen sources. The taxonomic relationship of strains H4-14 and 25a with previously described Xanthobacter strains was studied by numerical classification. Strain H4-14 was identified as a X. flavus strain, but the precise position of strain 25a remained uncertain. It probably belongs to a new species of the genus Xanthobacter. The levels of various enzymes involved in autotrophic and heterotrophic metabolism were determined following growth of strains H4-14 and 25a in batch and continuous cultures. The mechanisms involved in controlling ribulose-1,5-bisphosphate carboxylase/oxygenase synthesis in Xanthobacter strains appear to be comparable to those observed for other autotrophic bacteria, namely repression by organic compounds and derepression by autotrophic energy sources, such as methanol and hydrogen.
    corecore