12 research outputs found
Cooling atoms in an optical trap by selective parametric excitation
We demonstrate the possibility of energy-selective removal of cold atoms from
a tight optical trap by means of parametric excitation of the trap vibrational
modes. Taking advantage of the anharmonicity of the trap potential, we
selectively remove the most energetic trapped atoms or excite those at the
bottom of the trap by tuning the parametric modulation frequency. This process,
which had been previously identified as a possible source of heating, also
appears to be a robust way for forcing evaporative cooling in anharmonic traps.Comment: 5 pages, 5 figure
Nonperturbative and perturbative treatments of parametric heating in atom traps
We study the quantum description of parametric heating in harmonic potentials
both nonperturbatively and perturbatively, having in mind atom traps. The first
approach establishes an explicit connection between classical and quantum
descriptions; it also gives analytic expressions for properties such as the
width of fractional frequency parametric resonances. The second approach gives
an alternative insight into the problem and can be directly extended to take
into account nonlinear effects. This is specially important for shallow traps.Comment: 12 pages, 2 figure
Thermodynamic Measurements in a Strongly Interacting Fermi Gas
We conduct a series of measurements on the thermodynamic properties of an
optically-trapped strongly interacting Fermi gas, including the energy ,
entropy , and sound velocity . Our model-independent measurements of
and enable a precision study of the finite temperature thermodynamics. The
data are directly compared to several recent predictions. The
temperature in both the superfluid and normal fluid regime is obtained from the
fundamental thermodynamic relation by parameterizing
the data. Our data are also used to experimentally calibrate the
endpoint temperatures obtained for adiabatic sweeps of the magnetic field
between the ideal and strongly interacting regimes. This enables the first
experimental calibration of the temperature scale used in experiments on
fermionic pair condensation. Our calibration shows that the ideal gas
temperature measured for the onset of pair condensation corresponds closely to
the critical temperature estimated in the strongly interacting regime from the
fits to our data. The results are in very good agreement with recent
predictions. Finally, using universal thermodynamic relations, we estimate the
chemical potential and heat capacity of the trapped gas from the data.Comment: 29 pages, 12 figures. To appear in JLTP online, and in the January,
2009 volum
Recommended from our members
Design and analysis of a hybrid X-ray transmission and diffraction system
Aviation security, mail inspection, medical diagnostics and many other industries all face the same challenge: to accurately identify the presence of a target material concealed within a cluttered surrounding environment. X-ray systems that combine transmission and diffraction measurements promise excellent detection performance with low false alarm rates; however, conventional approaches to combining these measurements typically under-utilize the available information and result in higher overall system resource costs. Here, we consider a fully integrated approach to hybrid X-ray transmission and diffraction systems and discuss simulation- and experimental-based investigations of the design and performance (both imaging and detection) of such systems. Based on this analysis, we describe a hybrid system capable of scanning boxes and/or luggage and report its ability to distinguish materials of interest to aviation security and pharmaceutical inspection. © 2021 SPIE.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]