95 research outputs found

    Spherically Symmetric, Self-Similar Spacetimes

    Get PDF
    Self-similar spacetimes are of importance to cosmology and to gravitational collapse problems. We show that self-similarity or the existence of a homothetic Killing vector field for spherically symmetric spacetimes implies the separability of the spacetime metric in terms of the co-moving coordinates and that the metric is, uniquely, the one recently reported in [cqg1]. The spacetime, in general, has non-vanishing energy-flux and shear. The spacetime admits matter with any equation of state.Comment: Submitted to Physical Review Letter

    On perfect fluid models in non-comoving observational spherical coordinates

    Full text link
    We use null spherical (observational) coordinates to describe a class of inhomogeneous cosmological models. The proposed cosmological construction is based on the observer past null cone. A known difficulty in using inhomogeneous models is that the null geodesic equation is not integrable in general. Our choice of null coordinates solves the radial ingoing null geodesic by construction. Furthermore, we use an approach where the velocity field is uniquely calculated from the metric rather than put in by hand. Conveniently, this allows us to explore models in a non-comoving frame of reference. In this frame, we find that the velocity field has shear, acceleration and expansion rate in general. We show that a comoving frame is not compatible with expanding perfect fluid models in the coordinates proposed and dust models are simply not possible. We describe the models in a non-comoving frame. We use the dust models in a non-comoving frame to outline a fitting procedure.Comment: 8 pages, 1 figure. To appear in Phys.Rev.

    Uniqueness of Self-Similar Asymptotically Friedmann-Robertson-Walker Spacetime in Brans-Dicke theory

    Full text link
    We investigate spherically symmetric self-similar solutions in Brans-Dicke theory. Assuming a perfect fluid with the equation of state p=(γ−1)ÎŒ(1≀γ<2)p=(\gamma-1)\mu (1 \le \gamma<2), we show that there are no non-trivial solutions which approach asymptotically to the flat Friedmann-Robertson-Walker spacetime if the energy density is positive. This result suggests that primordial black holes in Brans-Dicke theory cannot grow at the same rate as the size of the cosmological particle horizon.Comment: Revised version, 4 pages, no figures, Revtex, accepted for publication in Physical Review

    Non-adiabatic collapse of a quasi-spherical radiating star

    Full text link
    A model is proposed of a collapsing quasi-spherical radiating star with matter content as shear-free isotropic fluid undergoing radial heat-flow with outgoing radiation. To describe the radiation of the system, we have considered both plane symmetric and spherical Vaidya solutions. Physical conditions and thermodynamical relations are studied using local conservation of momentum and surface red-shift. We have found that for existence of radiation on the boundary, pressure on the boundary is not necessary.Comment: 8 Latex pages, No figures, Revtex styl

    The Lemaitre Model and the Generalisation of the Cosmic Mass

    Full text link
    We consider the spherically symmetric metric with a comoving perfect fluid and non-zero pressure -- the Lemaitre metric -- and present it in the form of a calculational algorithm. We use it to review the definition of mass, and to look at the apparent horizon relations on the observer's past null cone. We show that the introduction of pressure makes it difficult to separate the mass from other physical parameters in an invariant way. Under the usual mass definition, the apparent horizon relation, that relates the diameter distance to the cosmic mass, remains the same as in the Lemaitre-Tolman case.Comment: latex, 16 pages, Revision has minor changes due to referee's comments

    No Go Theorem for Kinematic Self-Similarity with A Polytropic Equation of State

    Get PDF
    We have investigated spherically symmetric spacetimes which contain a perfect fluid obeying the polytropic equation of state and admit a kinematic self-similar vector of the second kind which is neither parallel nor orthogonal to the fluid flow. We have assumed two kinds of polytropic equations of state and shown in general relativity that such spacetimes must be vacuum.Comment: 5 pages, no figures. Revtex. One word added to the title. Final version to appear in Physical Review D as a Brief Repor

    Self-Similar Scalar Field Collapse: Naked Singularities and Critical Behaviour

    Get PDF
    Homothetic scalar field collapse is considered in this article. By making a suitable choice of variables the equations are reduced to an autonomous system. Then using a combination of numerical and analytic techniques it is shown that there are two classes of solutions. The first consists of solutions with a non-singular origin in which the scalar field collapses and disperses again. There is a singularity at one point of these solutions, however it is not visible to observers at finite radius. The second class of solutions includes both black holes and naked singularities with a critical evolution (which is neither) interpolating between these two extremes. The properties of these solutions are discussed in detail. The paper also contains some speculation about the significance of self-similarity in recent numerical studies.Comment: 27 pages including 5 encapsulated postcript figures in separate compressed file, report NCL94-TP1

    Critical Collapse of Cylindrically Symmetric Scalar Field in Four-Dimensional Einstein's Theory of Gravity

    Full text link
    Four-dimensional cylindrically symmetric spacetimes with homothetic self-similarity are studied in the context of Einstein's Theory of Gravity, and a class of exact solutions to the Einstein-massless scalar field equations is found. Their local and global properties are investigated and found that they represent gravitational collapse of a massless scalar field. In some cases the collapse forms black holes with cylindrical symmetry, while in the other cases it does not. The linear perturbations of these solutions are also studied and given in closed form. From the spectra of the unstable eigen-modes, it is found that there exists one solution that has precisely one unstable mode, which may represent a critical solution, sitting on a boundary that separates two different basins of attraction in the phase space.Comment: Some typos are corrected. The final version to appear in Phys. Rev.

    Higher dimensional dust collapse with a cosmological constant

    Get PDF
    The general solution of the Einstein equation for higher dimensional (HD) spherically symmetric collapse of inhomogeneous dust in presence of a cosmological term, i.e., exact interior solutions of the Einstein field equations is presented for the HD Tolman-Bondi metrics imbedded in a de Sitter background. The solution is then matched to exterior HD Scwarschild-de Sitter. A brief discussion on the causal structure singularities and horizons is provided. It turns out that the collapse proceed in the same way as in the Minkowski background, i.e., the strong curvature naked singularities form and that the higher dimensions seem to favor black holes rather than naked singularities.Comment: 7 Pages, no figure

    About Bianchi I with VSL

    Full text link
    In this paper we study how to attack, through different techniques, a perfect fluid Bianchi I model with variable G,c and Lambda, but taking into account the effects of a cc-variable into the curvature tensor. We study the model under the assumption,div(T)=0. These tactics are: Lie groups method (LM), imposing a particular symmetry, self-similarity (SS), matter collineations (MC) and kinematical self-similarity (KSS). We compare both tactics since they are quite similar (symmetry principles). We arrive to the conclusion that the LM is too restrictive and brings us to get only the flat FRW solution. The SS, MC and KSS approaches bring us to obtain all the quantities depending on \int c(t)dt. Therefore, in order to study their behavior we impose some physical restrictions like for example the condition q<0 (accelerating universe). In this way we find that cc is a growing time function and Lambda is a decreasing time function whose sing depends on the equation of state, w, while the exponents of the scale factor must satisfy the conditions ∑i=13αi=1\sum_{i=1}^{3}\alpha_{i}=1 and ∑i=13αi2<1,\sum_{i=1}^{3}\alpha_{i}^{2}<1, ∀ω\forall\omega, i.e. for all equation of state,, relaxing in this way the Kasner conditions. The behavior of GG depends on two parameters, the equation of state ω\omega and Ï”,\epsilon, a parameter that controls the behavior of c(t),c(t), therefore GG may be growing or decreasing.We also show that through the Lie method, there is no difference between to study the field equations under the assumption of a c−c-var affecting to the curvature tensor which the other one where it is not considered such effects.Nevertheless, it is essential to consider such effects in the cases studied under the SS, MC, and KSS hypotheses.Comment: 29 pages, Revtex4, Accepted for publication in Astrophysics & Space Scienc
    • 

    corecore