8 research outputs found

    Long-term perturbations due to a disturbing body in elliptic inclined orbit

    Full text link
    In the current study, a double-averaged analytical model including the action of the perturbing body's inclination is developed to study third-body perturbations. The disturbing function is expanded in the form of Legendre polynomials truncated up to the second-order term, and then is averaged over the periods of the spacecraft and the perturbing body. The efficiency of the double-averaged algorithm is verified with the full elliptic restricted three-body model. Comparisons with the previous study for a lunar satellite perturbed by Earth are presented to measure the effect of the perturbing body's inclination, and illustrate that the lunar obliquity with the value 6.68\degree is important for the mean motion of a lunar satellite. The application to the Mars-Sun system is shown to prove the validity of the double-averaged model. It can be seen that the algorithm is effective to predict the long-term behavior of a high-altitude Martian spacecraft perturbed by Sun. The double-averaged model presented in this paper is also applicable to other celestial systems.Comment: 28 pages, 6 figure

    Discrete-State Abstractions of Nonlinear Systems Using Multi-resolution Quantizer

    Full text link
    Abstract. This paper proposes a design method for discrete abstrac-tions of nonlinear systems using multi-resolution quantizer, which is ca-pable of handling state dependent approximation precision requirements. To this aim, we extend the notion of quantizer embedding, which has been proposed by the authors ’ previous works as a transformation from continuous-state systems to discrete-state systems, to a multi-resolution setting. Then, we propose a computational method that analyzes how a locally generated quantization error is propagated through the state space. Based on this method, we present an algorithm that generates a multi-resolution quantizer with a specified error precision by finite refine-ments. Discrete abstractions produced by the proposed method exhibit non-uniform distribution of discrete states and inputs.

    Symmetry invariance of multiagent formations in self-pursuit

    No full text

    Orbital Perturbations Due to Massive Rings

    No full text
    corecore