60 research outputs found

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    The self confident child

    No full text
    viii, 174 p.; 23 cm

    Structure-based multiple alignment of extracellular pectate lyase sequences

    No full text
    International audienc

    Valine and nonessential amino acids affect bidirectional transport rates of leucine and isoleucine in bovine mammary epithelial cells

    No full text
    ABSTRACT: A more complete understanding of the mechanisms controlling AA transport in mammary glands of dairy cattle will help identify solutions to increase nitrogen feeding efficiency on farms. It was hypothesized that Ala, Gln, and Gly (NEAAG), which are actively transported into cells and exchanged for all branched-chain AA (BCAA), may stimulate transport of BCAA, and that Val may antagonize transport of the other BCAA due to transporter competition. Thus, we evaluated the effects of varying concentrations of NEAAG and Val on transport and metabolism of the BCAA Ala, Met, Phe, and Thr by bovine mammary epithelial cells. Primary cultures of bovine mammary epithelial cells were assigned to treatments of low (70% of mean in vivo plasma concentrations of lactating dairy cows) and high (200%) concentrations of Val and NEAAG (LVal and LNEAAG, HVal and HNEAAG, respectively) in a 2 Ă— 2 factorial design. Cells were preloaded with treatment media containing [15N]-labeled AA for 24 h. The [15N]-labeled media were replaced with treatment media containing [13C]-labeled AA. Media and cells were harvested from plates at 0, 0.5, 1, 5, 15, 30, 60, and 240 min after application of the [13C]-labeled AA and assessed for [15N]- and [13C]-AA label concentrations. The data were used to derive transport, transamination, irreversible loss, and protein-synthesis fluxes. All Val fluxes, except synthesis of rapidly exchanging tissue protein, increased with the HVal treatment. Interestingly, the rapidly exchanging tissue protein, transamination, and irreversible-loss rate constants decreased with HVal, indicating that the significant flux increases were primarily driven by mass action with the cells resisting the flux increases by downregulating activity. However, the decreases could also reflect saturation of processes that would drive down the mass-action rate constants. This is supported by decreases in the same rate constants for Ile and Leu with HVal. This could be due to either competition for shared transamination and oxidation reactions or a reduction in enzymatic activity. Also, NEAAG did not affect Val fluxes, but influx and efflux rate constants increased for both Val and Leu with HNEAAG, indicating an activating substrate effect. Overall, AA transport rates generally responded concordantly with extracellular concentrations, indicating the transporters are not substrate-saturated within the in vivo range. However, BCAA transamination and oxidation enzymes may be approaching saturation within in vivo ranges. In addition, System L transport activity appeared to be stimulated by as much as 75% with high intracellular concentrations of Ala, Gln, and Gly. High concentrations of Val antagonized transport activity of Ile and Leu by 68% and 15%, respectively, indicating competitive inhibition, but this was only observable at HNEAAG concentrations. The exchange transporters of System L transport 8 of the essential AA that make up approximately 40% of milk protein, so better understanding this transporter is an important step for increased efficiency

    Leucines on a roll

    No full text
    Several proteins have recently been found to consist of repetitive structural units in a superhelical arrangement. The structure of the leucine-rich repeat variant protein represents an unexpected addition to the list of such proteins, with the repetitive unit consisting of antiparallel alpha- and 3(10)-helices
    • …
    corecore