584 research outputs found
Optical sensor of salt concentration: uncertainty evaluation
International audienceWe report on the uncertainty upon the concentration of NaCl in an aqueous solution, as determined from the change in intensity of the OH band withina new Raman optical sensor. The various sources of errors are considered and the standard uncertainty is calculated. The accuracy of the sensor is discussed according to the application
Abilities of Raman spectroscopy to detect sulphates, nitrates and phosphates diluted in water
International audienceThe control of the quality of water is a growing need in our modern societies in order to insure the access of water in healthy conditions to an always rising number of people through the world. This leads to the obligation to detect all pollutants in flow water, rivers, basins, lakes… [1]. This challenge requires new and efficient techniques which are able to provide in situ and quick measurements. Nitrates, sulphates, and phosphates have to be specially purchased since they are very water soluble and lead to negative incidence in the environment. They arise generally from pesticides used in agriculture [2,3]. Techniques generally used for pesticide detection are chromatographic methods like gas chromatography high performance liquid chromatography and mass spectrometry. They are relatively sensitive and reliable. However, they had limitations like complex procedure, time consuming sample treatments, and inability for on site detection. Here, we investigated the abilities of Raman probes to detect simultaneously the presence of several pollutants dissolved in water and to determine their concentration as well. Measurements have been done with a 532 nm exciting line using a spectrometer Kaiser RXN1. In Figure 1, one can see that an own signature can be detected by Raman probe for each kind of anion in different spectral ranges. As a consequence, the concentration of each salt in water can be deduced from an appropriate calibration
Raman study of cation effect on sulfate vibration modes in solid state and in aqueous solutions
International audienceRaman spectra of potassium, sodium, and ammonium sulfates (K2SO4, Na2SO4, and (NH4)2SO4) are reported and analyzed. These sulfates have been investigated under two states: solid (anhydrous and hydrated) salts and aqueous solutions. The effects of monovalent ions (K+ , Na+ , and NH4+) and hydration on the position of Raman lines assigned to internal vibrations of sulfate anion SO42- are discussed. In solid salts, the line position of each Raman peak is shown to decrease with increasing radius of the cation. The main ν1 mode of sulfate molecule is particularly affected. It is emphasized that this sensitivity in solid sulfates vanishes in aqueous solutions. As a consequence, this mode can be probed by Raman spectroscopy as the main signature of SO42- to determine its concentration within a single calibration
Electronic structure and ferroelectricity in SrBi2Ta2O9
The electronic structure of SrBi2Ta2O9 is investigated from first-principles,
within the local density approximation, using the full-potential linearized
augmented plane wave (LAPW) method. The results show that, besides the large
Ta(5d)-O(2p) hybridization which is a common feature of the ferroelectric
perovskites, there is an important hybridization between bismuth and oxygen
states. The underlying static potential for the ferroelectric distortion and
the primary source for ferroelectricity is investigated by a lattice-dynamics
study using the Frozen Phonon approach.Comment: 17 pages, 7 figures. Phys. Rev. B, in pres
Model-independent search for CP violation in D0→K−K+π−π+ and D0→π−π+π+π− decays
A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states K−K+π−π+ and π−π+π+π− is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb−1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the K−K+π−π+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the π−π+π+π− final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity
Search for the lepton-flavor-violating decays Bs0→e±μ∓ and B0→e±μ∓
A search for the lepton-flavor-violating decays Bs0→e±μ∓ and B0→e±μ∓ is performed with a data sample, corresponding to an integrated luminosity of 1.0 fb-1 of pp collisions at √s=7 TeV, collected by the LHCb experiment. The observed number of Bs0→e±μ∓ and B0→e±μ∓ candidates is consistent with background expectations. Upper limits on the branching fractions of both decays are determined to be B(Bs0→e±μ∓)101 TeV/c2 and MLQ(B0→e±μ∓)>126 TeV/c2 at 95% C.L., and are a factor of 2 higher than the previous bounds
Measurements of long-range near-side angular correlations in TeV proton-lead collisions in the forward region
Two-particle angular correlations are studied in proton-lead collisions at a
nucleon-nucleon centre-of-mass energy of TeV, collected
with the LHCb detector at the LHC. The analysis is based on data recorded in
two beam configurations, in which either the direction of the proton or that of
the lead ion is analysed. The correlations are measured in the laboratory
system as a function of relative pseudorapidity, , and relative
azimuthal angle, , for events in different classes of event
activity and for different bins of particle transverse momentum. In
high-activity events a long-range correlation on the near side, , is observed in the pseudorapidity range . This
measurement of long-range correlations on the near side in proton-lead
collisions extends previous observations into the forward region up to
. The correlation increases with growing event activity and is found
to be more pronounced in the direction of the lead beam. However, the
correlation in the direction of the lead and proton beams are found to be
compatible when comparing events with similar absolute activity in the
direction analysed.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-040.htm
Study of the production of and hadrons in collisions and first measurement of the branching fraction
The product of the () differential production
cross-section and the branching fraction of the decay () is
measured as a function of the beauty hadron transverse momentum, ,
and rapidity, . The kinematic region of the measurements is and . The measurements use a data sample
corresponding to an integrated luminosity of collected by the
LHCb detector in collisions at centre-of-mass energies in 2011 and in 2012. Based on previous LHCb
results of the fragmentation fraction ratio, , the
branching fraction of the decay is
measured to be \begin{equation*} \mathcal{B}(\Lambda_b^0\rightarrow J/\psi
pK^-)= (3.17\pm0.04\pm0.07\pm0.34^{+0.45}_{-0.28})\times10^{-4},
\end{equation*} where the first uncertainty is statistical, the second is
systematic, the third is due to the uncertainty on the branching fraction of
the decay , and the
fourth is due to the knowledge of . The sum of the
asymmetries in the production and decay between and
is also measured as a function of and .
The previously published branching fraction of , relative to that of , is updated.
The branching fractions of are determined.Comment: 29 pages, 19figures. All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-032.htm
Evidence for the strangeness-changing weak decay
Using a collision data sample corresponding to an integrated luminosity
of 3.0~fb, collected by the LHCb detector, we present the first search
for the strangeness-changing weak decay . No
hadron decay of this type has been seen before. A signal for this decay,
corresponding to a significance of 3.2 standard deviations, is reported. The
relative rate is measured to be
, where and
are the and fragmentation
fractions, and is the branching
fraction. Assuming is bounded between 0.1 and
0.3, the branching fraction would lie
in the range from to .Comment: 7 pages, 2 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-047.htm
flavour tagging using charm decays at the LHCb experiment
An algorithm is described for tagging the flavour content at production of
neutral mesons in the LHCb experiment. The algorithm exploits the
correlation of the flavour of a meson with the charge of a reconstructed
secondary charm hadron from the decay of the other hadron produced in the
proton-proton collision. Charm hadron candidates are identified in a number of
fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is
calibrated on the self-tagged decay modes and using of data collected by the LHCb
experiment at centre-of-mass energies of and
. Its tagging power on these samples of
decays is .Comment: All figures and tables, along with any supplementary material and
additional information, are available at
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm
- …