10,383 research outputs found
Quantum theory of resonantly enhanced four-wave mixing: mean-field and exact numerical solutions
We present a full quantum analysis of resonant forward four-wave mixing based
on electromagnetically induced transparency (EIT). In particular, we study the
regime of efficient nonlinear conversion with low-intensity fields that has
been predicted from a semiclassical analysis. We derive an effective nonlinear
interaction Hamiltonian in the adiabatic limit. In contrast to conventional
nonlinear optics this Hamiltonian does not have a power expansion in the fields
and the conversion length increases with the input power. We analyze the
stationary wave-mixing process in the forward scattering configuration using an
exact numerical analysis for up to input photons and compare the results
with a mean-field approach. Due to quantum effects, complete conversion from
the two pump fields into the signal and idler modes is achieved only
asymptotically for large coherent pump intensities or for pump fields in
few-photon Fock states. The signal and idler fields are perfectly quantum
correlated which has potential applications in quantum communication schemes.
We also discuss the implementation of a single-photon phase gate for continuous
quantum computation.Comment: 10 pages, 11 figure
Existence of Dynamical Scaling in the Temporal Signal of Time Projection Chamber
The temporal signals from a large gas detector may show dynamical scaling due
to many correlated space points created by the charged particles while passing
through the tracking medium. This has been demonstrated through simulation
using realistic parameters of a Time Projection Chamber (TPC) being fabricated
to be used in ALICE collider experiment at CERN. An interesting aspect of this
dynamical behavior is the existence of an universal scaling which does not
depend on the multiplicity of the collision. This aspect can be utilised
further to study physics at the device level and also for the online monitoring
of certain physical observables including electronics noise which are a few
crucial parameters for the optimal TPC performance.Comment: 5 pages, 6 figure
Full quantum solutions to the resonant four-wave mixing of two single-photon wave packets
We analyze both analytically and numerically the resonant four-wave mixing of
two co-propagating single-photon wave packets. We present analytic expressions
for the two-photon wave function and show that soliton-type quantum solutions
exist which display a shape-preserving oscillatory exchange of excitations
between the modes. Potential applications including quantum information
processing are discussed.Comment: 7 pages, 3 figure
Fermi super-Tonks-Girardeau state for attractive Fermi gases in an optical lattice
We demonstrate that a kind of highly excited state of strongly attractive
Hubbard model, named of Fermi super-Tonks-Girardeau state, can be realized in
the spin-1/2 Fermi optical lattice system by a sudden switch of interaction
from the strongly repulsive regime to the strongly attractive regime. In
contrast to the ground state of the attractive Hubbard model, such a state is
the lowest scattering state with no pairing between attractive fermions. With
the aid of Bethe-ansatz method, we calculate energies of both the Fermi
Tonks-Girardeau gas and the Fermi super-Tonks-Girardeau state of spin-1/2
ultracold fermions and show that both energies approach to the same limit as
the strength of the interaction goes to infinity. By exactly solving the quench
dynamics of the Hubbard model, we demonstrate that the Fermi
super-Tonks-Girardeau state can be transferred from the initial repulsive
ground state very efficiently. This allows the experimental study of properties
of Fermi super-Tonks-Girardeau gas in optical lattices.Comment: 7 pages, 7 figure
Orbital evolution of a particle around a black hole: II. Comparison of contributions of spin-orbit coupling and the self force
We consider the evolution of the orbit of a spinning compact object in a
quasi-circular, planar orbit around a Schwarzschild black hole in the extreme
mass ratio limit. We compare the contributions to the orbital evolution of both
spin-orbit coupling and the local self force. Making assumptions on the
behavior of the forces, we suggest that the decay of the orbit is dominated by
radiation reaction, and that the conservative effect is typically dominated by
the spin force. We propose that a reasonable approximation for the
gravitational waveform can be obtained by ignoring the local self force, for
adjusted values of the parameters of the system. We argue that this
approximation will only introduce small errors in the astronomical
determination of these parameters.Comment: 11 pages, 7 figure
Astrophysics from data analysis of spherical gravitational wave detectors
The direct detection of gravitational waves will provide valuable
astrophysical information about many celestial objects. Also, it will be an
important test to general relativity and other theories of gravitation. The
gravitational wave detector SCHENBERG has recently undergone its first test
run. It is expected to have its first scientific run soon. In this work the
data analysis system of this spherical, resonant mass detector is tested
through the simulation of the detection of gravitational waves generated during
the inspiralling phase of a binary system. It is shown from the simulated data
that it is not necessary to have all six transducers operational in order to
determine the source's direction and the wave's amplitudes.Comment: 8 pages and 3 figure
Ideal Spin Filters: Theoretical Study of Electron Transmission Through Ordered and Disordered Interfaces Between Ferromagnetic Metals and Semiconductors
It is predicted that certain atomically ordered interfaces between some
ferromagnetic metals (F) and semiconductors (S) should act as ideal spin
filters that transmit electrons only from the majority spin bands or only from
the minority spin bands of the F to the S at the Fermi energy, even for F with
both majority and minority bands at the Fermi level. Criteria for determining
which combinations of F, S and interface should be ideal spin filters are
formulated. The criteria depend only on the bulk band structures of the S and F
and on the translational symmetries of the S, F and interface. Several examples
of systems that meet these criteria to a high degree of precision are
identified. Disordered interfaces between F and S are also studied and it is
found that intermixing between the S and F can result in interfaces with spin
anti-filtering properties, the transmitted electrons being much less spin
polarized than those in the ferromagnetic metal at the Fermi energy. A patent
application based on this work has been commenced by Simon Fraser University.Comment: RevTeX, 12 pages, 5 figure
Evolution of helicity in NOAA 10923 over three consecutive solar rotations
We have studied the evolution of magnetic helicity and chirality in an active
region over three consecutive solar rotations. The region when it first
appeared was named NOAA10923 and in subsequent rotations it was numbered NOAA
10930, 10935 and 10941. We compare the chirality of these regions at
photospheric, chromospheric and coronal heights. The observations used for
photospheric and chromospheric heights are taken from Solar Vector Magnetograph
(SVM) and H_alpha imaging telescope of Udaipur Solar Observatory (USO),
respectively. We discuss the chirality of the sunspots and associated H_alpha
filaments in these regions. We find that the twistedness of superpenumbral
filaments is maintained in the photospheric transverse field vectors also. We
also compare the chirality at photospheric and chromospheric heights with the
chirality of the associated coronal loops, as observed from the HINODE X-Ray
Telescope.Comment: 8 pages, 4 figure
Quality of Life and Clinical Outcomes in Elderly Patients Treated with Ventricular Pacing as Compared with Dual-Chamber Pacing
ABSTRACT
Background Standard clinical practice permits the use of either single-chamber ventricular pacemakers or dual-chamber pacemakers for most patients who require cardiac pacing. Ventricular pacemakers are less expensive, but dual-chamber pacemakers are believed to be more physiologic. However, it is not known whether either type of pacemaker results in superior clinical outcomes.
Methods The Pacemaker Selection in the Elderly study was a 30-month, single-blind, randomized, controlled comparison of ventricular pacing and dualchamber pacing in 407 patients 65 years of age or older in 29 centers. Patients received a dual-chamber pacemaker that had been randomly programmed to either ventricular pacing or dual-chamber pacing. The primary end point was health-related quality of life as measured by the 36-item Medical Outcomes Study Short-Form General Health Survey.
Results The average age of the patients was 76 years (range, 65 to 96), and 60 percent were men. Quality of life improved significantly after pacemaker implantation (P0.001), but there were no differences between the two pacing modes in either the quality of life or prespecified clinical outcomes (including cardiovascular events or death). However, 53 patients assigned to ventricular pacing (26 percent) were crossed over to dual-chamber pacing because of symptoms related to the pacemaker syndrome. Patients with sinus-node dysfunction, but not those with atrioventricular block, had moderately better quality of life and cardiovascular functional status with dual-chamber pacing than with ventricular pacing. Trends of borderline statistical significance in clinical end points favoring dual-chamber pacing were observed in patients with sinus-node dysfunction, but not in those with atrioventricular block.
Conclusions The implantation of a permanent pacemaker improves health-related quality of life. The quality-of-life benefits associated with dualchamber pacing as compared with ventricular pacing are observed principally in the subgroup of patients with sinus-node dysfunction. (N Engl J Med 1998;338:1097-104.
Evidence for a Self-Bound Liquid State and the Commensurate-Incommensurate Coexistence in 2D He on Graphite
We made heat-capacity measurements of two dimensional (2D) He adsorbed on
graphite preplated with monolayer He in a wide temperature range (0.1 80 mK) at densities higher than that for the 4/7 phase (= 6.8
nm). In the density range of 6.8 8.1 nm, the 4/7
phase is stable against additional He atoms up to 20% and they are promoted
into the third layer. We found evidence that such promoted atoms form a
self-bound 2D Fermi liquid with an approximate density of 1 nm from the
measured density dependence of the -coefficient of heat capacity. We
also show evidence for the first-order transition between the commensurate 4/7
phase and the ferromagnetic incommensurate phase in the second layer in the
density range of 8.1 9.5 nm.Comment: 6 pages, 4 figure
- …