10,383 research outputs found

    Quantum theory of resonantly enhanced four-wave mixing: mean-field and exact numerical solutions

    Full text link
    We present a full quantum analysis of resonant forward four-wave mixing based on electromagnetically induced transparency (EIT). In particular, we study the regime of efficient nonlinear conversion with low-intensity fields that has been predicted from a semiclassical analysis. We derive an effective nonlinear interaction Hamiltonian in the adiabatic limit. In contrast to conventional nonlinear optics this Hamiltonian does not have a power expansion in the fields and the conversion length increases with the input power. We analyze the stationary wave-mixing process in the forward scattering configuration using an exact numerical analysis for up to 10310^3 input photons and compare the results with a mean-field approach. Due to quantum effects, complete conversion from the two pump fields into the signal and idler modes is achieved only asymptotically for large coherent pump intensities or for pump fields in few-photon Fock states. The signal and idler fields are perfectly quantum correlated which has potential applications in quantum communication schemes. We also discuss the implementation of a single-photon phase gate for continuous quantum computation.Comment: 10 pages, 11 figure

    Existence of Dynamical Scaling in the Temporal Signal of Time Projection Chamber

    Full text link
    The temporal signals from a large gas detector may show dynamical scaling due to many correlated space points created by the charged particles while passing through the tracking medium. This has been demonstrated through simulation using realistic parameters of a Time Projection Chamber (TPC) being fabricated to be used in ALICE collider experiment at CERN. An interesting aspect of this dynamical behavior is the existence of an universal scaling which does not depend on the multiplicity of the collision. This aspect can be utilised further to study physics at the device level and also for the online monitoring of certain physical observables including electronics noise which are a few crucial parameters for the optimal TPC performance.Comment: 5 pages, 6 figure

    Full quantum solutions to the resonant four-wave mixing of two single-photon wave packets

    Full text link
    We analyze both analytically and numerically the resonant four-wave mixing of two co-propagating single-photon wave packets. We present analytic expressions for the two-photon wave function and show that soliton-type quantum solutions exist which display a shape-preserving oscillatory exchange of excitations between the modes. Potential applications including quantum information processing are discussed.Comment: 7 pages, 3 figure

    Fermi super-Tonks-Girardeau state for attractive Fermi gases in an optical lattice

    Full text link
    We demonstrate that a kind of highly excited state of strongly attractive Hubbard model, named of Fermi super-Tonks-Girardeau state, can be realized in the spin-1/2 Fermi optical lattice system by a sudden switch of interaction from the strongly repulsive regime to the strongly attractive regime. In contrast to the ground state of the attractive Hubbard model, such a state is the lowest scattering state with no pairing between attractive fermions. With the aid of Bethe-ansatz method, we calculate energies of both the Fermi Tonks-Girardeau gas and the Fermi super-Tonks-Girardeau state of spin-1/2 ultracold fermions and show that both energies approach to the same limit as the strength of the interaction goes to infinity. By exactly solving the quench dynamics of the Hubbard model, we demonstrate that the Fermi super-Tonks-Girardeau state can be transferred from the initial repulsive ground state very efficiently. This allows the experimental study of properties of Fermi super-Tonks-Girardeau gas in optical lattices.Comment: 7 pages, 7 figure

    Orbital evolution of a particle around a black hole: II. Comparison of contributions of spin-orbit coupling and the self force

    Full text link
    We consider the evolution of the orbit of a spinning compact object in a quasi-circular, planar orbit around a Schwarzschild black hole in the extreme mass ratio limit. We compare the contributions to the orbital evolution of both spin-orbit coupling and the local self force. Making assumptions on the behavior of the forces, we suggest that the decay of the orbit is dominated by radiation reaction, and that the conservative effect is typically dominated by the spin force. We propose that a reasonable approximation for the gravitational waveform can be obtained by ignoring the local self force, for adjusted values of the parameters of the system. We argue that this approximation will only introduce small errors in the astronomical determination of these parameters.Comment: 11 pages, 7 figure

    Astrophysics from data analysis of spherical gravitational wave detectors

    Full text link
    The direct detection of gravitational waves will provide valuable astrophysical information about many celestial objects. Also, it will be an important test to general relativity and other theories of gravitation. The gravitational wave detector SCHENBERG has recently undergone its first test run. It is expected to have its first scientific run soon. In this work the data analysis system of this spherical, resonant mass detector is tested through the simulation of the detection of gravitational waves generated during the inspiralling phase of a binary system. It is shown from the simulated data that it is not necessary to have all six transducers operational in order to determine the source's direction and the wave's amplitudes.Comment: 8 pages and 3 figure

    Ideal Spin Filters: Theoretical Study of Electron Transmission Through Ordered and Disordered Interfaces Between Ferromagnetic Metals and Semiconductors

    Full text link
    It is predicted that certain atomically ordered interfaces between some ferromagnetic metals (F) and semiconductors (S) should act as ideal spin filters that transmit electrons only from the majority spin bands or only from the minority spin bands of the F to the S at the Fermi energy, even for F with both majority and minority bands at the Fermi level. Criteria for determining which combinations of F, S and interface should be ideal spin filters are formulated. The criteria depend only on the bulk band structures of the S and F and on the translational symmetries of the S, F and interface. Several examples of systems that meet these criteria to a high degree of precision are identified. Disordered interfaces between F and S are also studied and it is found that intermixing between the S and F can result in interfaces with spin anti-filtering properties, the transmitted electrons being much less spin polarized than those in the ferromagnetic metal at the Fermi energy. A patent application based on this work has been commenced by Simon Fraser University.Comment: RevTeX, 12 pages, 5 figure

    Evolution of helicity in NOAA 10923 over three consecutive solar rotations

    Full text link
    We have studied the evolution of magnetic helicity and chirality in an active region over three consecutive solar rotations. The region when it first appeared was named NOAA10923 and in subsequent rotations it was numbered NOAA 10930, 10935 and 10941. We compare the chirality of these regions at photospheric, chromospheric and coronal heights. The observations used for photospheric and chromospheric heights are taken from Solar Vector Magnetograph (SVM) and H_alpha imaging telescope of Udaipur Solar Observatory (USO), respectively. We discuss the chirality of the sunspots and associated H_alpha filaments in these regions. We find that the twistedness of superpenumbral filaments is maintained in the photospheric transverse field vectors also. We also compare the chirality at photospheric and chromospheric heights with the chirality of the associated coronal loops, as observed from the HINODE X-Ray Telescope.Comment: 8 pages, 4 figure

    Quality of Life and Clinical Outcomes in Elderly Patients Treated with Ventricular Pacing as Compared with Dual-Chamber Pacing

    Get PDF
    ABSTRACT Background Standard clinical practice permits the use of either single-chamber ventricular pacemakers or dual-chamber pacemakers for most patients who require cardiac pacing. Ventricular pacemakers are less expensive, but dual-chamber pacemakers are believed to be more physiologic. However, it is not known whether either type of pacemaker results in superior clinical outcomes. Methods The Pacemaker Selection in the Elderly study was a 30-month, single-blind, randomized, controlled comparison of ventricular pacing and dualchamber pacing in 407 patients 65 years of age or older in 29 centers. Patients received a dual-chamber pacemaker that had been randomly programmed to either ventricular pacing or dual-chamber pacing. The primary end point was health-related quality of life as measured by the 36-item Medical Outcomes Study Short-Form General Health Survey. Results The average age of the patients was 76 years (range, 65 to 96), and 60 percent were men. Quality of life improved significantly after pacemaker implantation (P0.001), but there were no differences between the two pacing modes in either the quality of life or prespecified clinical outcomes (including cardiovascular events or death). However, 53 patients assigned to ventricular pacing (26 percent) were crossed over to dual-chamber pacing because of symptoms related to the pacemaker syndrome. Patients with sinus-node dysfunction, but not those with atrioventricular block, had moderately better quality of life and cardiovascular functional status with dual-chamber pacing than with ventricular pacing. Trends of borderline statistical significance in clinical end points favoring dual-chamber pacing were observed in patients with sinus-node dysfunction, but not in those with atrioventricular block. Conclusions The implantation of a permanent pacemaker improves health-related quality of life. The quality-of-life benefits associated with dualchamber pacing as compared with ventricular pacing are observed principally in the subgroup of patients with sinus-node dysfunction. (N Engl J Med 1998;338:1097-104.

    Evidence for a Self-Bound Liquid State and the Commensurate-Incommensurate Coexistence in 2D 3^3He on Graphite

    Full text link
    We made heat-capacity measurements of two dimensional (2D) 3^3He adsorbed on graphite preplated with monolayer 4^4He in a wide temperature range (0.1 T\leq T \leq 80 mK) at densities higher than that for the 4/7 phase (= 6.8 nm2^{-2}). In the density range of 6.8 ρ\leq \rho \leq 8.1 nm2^{-2}, the 4/7 phase is stable against additional 3^3He atoms up to 20% and they are promoted into the third layer. We found evidence that such promoted atoms form a self-bound 2D Fermi liquid with an approximate density of 1 nm2^{-2} from the measured density dependence of the γ\gamma-coefficient of heat capacity. We also show evidence for the first-order transition between the commensurate 4/7 phase and the ferromagnetic incommensurate phase in the second layer in the density range of 8.1 ρ\leq \rho \leq 9.5 nm2^{-2}.Comment: 6 pages, 4 figure
    corecore