3 research outputs found

    Uncovering precision phenotype-biomarker associations in traumatic brain injury using topological data analysis

    Get PDF
    Background: Traumatic brain injury (TBI) is a complex disorder that is traditionally stratified based on clinical signs and symptoms. Recent imaging and molecular biomarker innovations provide unprecedented opportunities for improved TBI precision medicine, incorporating patho-anatomical and molecular mechanisms. Complete integration of these diverse data for TBI diagnosis and patient stratification remains an unmet challenge. Methods and findings: The Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot multicenter study enrolled 586 acute TBI patients and collected diverse common data elements (TBI-CDEs) across the study population, including imaging, genetics, and clinical outcomes. We then applied topology-based data-driven discovery to identify natural subgroups of patients, based on the TBI-CDEs collected. Our hypothesis was two-fold: 1) A machine learning tool known as topological data analysis (TDA) would reveal data-driven patterns in patient outcomes to identify candidate biomarkers of recovery, and 2) TDA-identified biomarkers would significantly predict patient outcome recovery after TBI using more traditional methods of univariate statistical tests. TDA algorithms organized and mapped the data of TBI patients in multidimensional space, identifying a subset of mild TBI patients with a specific multivariate phenotype associated with unfavorable outcome at 3 and 6 months after injury. Further analyses revealed that this patient subset had high rates of post-traumatic stress disorder (PTSD), and enrichment in several distinct genetic polymorphisms associated with cellular responses to stress and DNA damage (PARP1), and in striatal dopamine processing (ANKK1, COMT, DRD2). Conclusions: TDA identified a unique diagnostic subgroup of patients with unfavorable outcome after mild TBI that were significantly predicted by the presence of specific genetic polymorphisms. Machine learning methods such as TDA may provide a robust method for patient stratification and treatment planning targeting identified biomarkers in future clinical trials in TBI patients

    Variation in neurosurgical management of traumatic brain injury

    Get PDF
    Background: Neurosurgical management of traumatic brain injury (TBI) is challenging, with only low-quality evidence. We aimed to explore differences in neurosurgical strategies for TBI across Europe. Methods: A survey was sent to 68 centers participating in the Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. The questionnaire contained 21 questions, including the decision when to operate (or not) on traumatic acute subdural hematoma (ASDH) and intracerebral hematoma (ICH), and when to perform a decompressive craniectomy (DC) in raised intracranial pressure (ICP). Results: The survey was completed by 68 centers (100%). On average, 10 neurosurgeons work in each trauma center. In all centers, a neurosurgeon was available within 30 min. Forty percent of responders reported a thickness or volume threshold for evacuation of an ASDH. Most responders (78%) decide on a primary DC in evacuating an ASDH during the operation, when swelling is present. For ICH, 3% would perform an evacuation directly to prevent secondary deterioration and 66% only in case of clinical deterioration. Most respondents (91%) reported to consider a DC for refractory high ICP. The reported cut-off ICP for DC in refractory high ICP, however, differed: 60% uses 25 mmHg, 18% 30 mmHg, and 17% 20 mmHg. Treatment strategies varied substantially between regions, specifically for the threshold for ASDH surgery and DC for refractory raised ICP. Also within center variation was present: 31% reported variation within the hospital for inserting an ICP monitor and 43% for evacuating mass lesions. Conclusion: Despite a homogeneous organization, considerable practice variation exists of neurosurgical strategies for TBI in Europe. These results provide an incentive for comparative effectiveness research to determine elements of effective neurosurgical care

    EFFECTS OF 23.4% SODIUM CHLORIDE SOLUTION IN REDUCING INTRACRANIAL PRESSURE IN PATIENTS WITH TRAUMATIC BRAIN INJURY: A PRELIMINARY STUDY

    No full text
    OBJECTIVE: Mannitol is the standard of care for patients with increased intracranial pressure (ICP), but multiple administrations of mannitol risk renal toxicity and fluid accumulation in the brain parenchyma with consequent worsening of cerebral edema. This preliminary study assessed the safety and efficacy of small-volume injections of 23.4% sodium chloride solution for the treatment of intracranial hypertension in patients with traumatic brain injury who became tolerant to mannitol. METHODS: We retrospectively reviewed the charts of 13 adult patients with traumatic brain injury who received mannitol and 23.4% sodium chloride independently for the treatment of intracranial hypertension at San Francisco General Hospital between January and October 2003. Charts were reviewed to determine ICP, cerebral perfusion pressure, mean arterial pressure, serum sodium values, and serum osmolarity before and after treatment with 23.4% sodium chloride and mannitol. Complications were noted. RESULTS: The mean reductions in ICP after treatment were significant for both mannitol (PϽ0.001) and hypertonic saline (PϽ0.001); there were no significant differences between reductions in ICP when comparing the two agents (P ϭ 0.174). The ICP reduction observed for hypertonic saline was durable, and its mean duration of effect (96 min) was significantly longer than that of mannitol treatment (59 min) (P ϭ 0.016). No complications were associated with treatment with hypertonic saline. CONCLUSION: This study suggests that 23.4% hypertonic saline is a safe and effective treatment for elevated ICP in patients after traumatic brain injury. These results warrant a rigorous evaluation of its efficacy as compared to mannitol in a prospective randomized controlled trial
    corecore