2 research outputs found
Hot Defect Superconformal Field Theory in an External Magnetic Field
In this paper we investigate the influence of an external magnetic field on a
flavoured holographic gauge theory dual to the D3/D5 intersection at finite
temperature. Our study shows that the external magnetic field has a freezing
effect on the confinement/ deconfinement phase transition. We construct the
corresponding phase diagram. We investigate some thermodynamic quantities of
the theory. A study of the entropy reveals enhanced relative jump of the
entropy at the "chiral" phase transition. A study of the magnetization shows
that both the confined and deconfined phases exhibit diamagnetic response. The
diamagnetic response in the deconfined phase has a stronger temperature
dependence reflecting the temperature dependence of the conductivity. We study
the meson spectrum of the theory and analyze the stability of the different
phases looking at both normal and quasi-normal semi-classical excitations. For
the symmetry breaking phase we analyze the corresponding pseudo-Goldstone modes
and prove that they satisfy non-relativistic dispersion relation.Comment: 42 pages, 14 figure
Transport Properties of Holographic Defects
We study the charge transport properties of fields confined to a
(2+1)-dimensional defect coupled to (3+1)-dimensional super-Yang-Mills at
large-\nc and strong coupling, using AdS/CFT techniques applied to linear
response theory. The dual system is described by \nf probe D5- or D7-branes
in the gravitational background of \nc black D3-branes. Surprisingly, the
transport properties of both defect CFT's are essentially identical -- even
though the D7-brane construction breaks all supersymmetries. We find that the
system possesses a conduction threshold given by the wave-number of the
perturbation and that the charge transport arises from a quasiparticle spectrum
which is consistent with an intuitive picture where the defect acquires a
finite width. We also examine finite- modifications arising from
higher derivative interactions in the probe brane action.Comment: 54 pages, 22 figures, references added, minor changes to figures and
comments, final version published in JHE