4,125 research outputs found

    Model-independent study of the QCD sum rule for the pi NN coupling constant

    Full text link
    We reinvestigate the QCD sum rule for the pi NN coupling constant, g, starting from the vacuum-to-pion matrix element of the correlation function of the interpolating fields of two nucleons. We study in detail the physical content of the correlation function without referring to the effective theory. We consider the invariant correlation functions by splitting the correlation function into different Dirac structures. We show that the coefficients of the double-pole terms are proportional to g but that the coefficients of the single-pole terms are not determined by g. In the chiral limit the single-pole terms as well as the continuum terms are ill defined in the dispersion integral. Therefore, the use of naive QCD sum rules obtained from the invariant correlation functions is not justified. A possible procedure to avoid this difficulty is discussed.Comment: 20 pages, 2 figure

    Inflation with blowing-up solution of cosmological constant problem

    Get PDF
    The cosmological constant problem is how one chooses, without fine-tuning, one singular point Λeff=0\Lambda_{eff}=0 for the 4D cosmological constant. We argue that some recently discovered {\it weak self-tuning} solutions can be viewed as blowing-up this one point into a band of some parameter. These weak self-tuning solutions may have a virtue that only de Sitter space solutions are allowed outside this band, allowing an inflationary period. We adopt the hybrid inflation at the brane to exit from this inflationary phase and to enter into the standard Big Bang cosmology.Comment: LaTeX file of 20 pages including 2 eps figure

    A Human Situation Awareness Support System to Avoid Technological Disasters

    Full text link
    In many complex technological systems, accidents have primarily been attributed to human error. In the majority of these accidents the human operators were striving against significant challenges. They have to face data overload, the challenge of working with a complex system and the stressful task of understanding what is going on in the situation. Therefore, to design and implement complex technological systems where the information flow is quite high, and poor decisions may lead to serious consequences, Situation Awareness (SA) should be appropriately considered. A level 1 SA is highly supported in these systems through the various heterogeneous sensors and signal-processing methods but, for levels 2 and 3 there is still a need for concepts and methods. This work develops a system called the Human Situation Awareness Support System (HSASS) that supports the safety operators in an ever increasing amount of available risky status and alert information. The proposed system includes a new dynamic situation assessment method based on risk, which has the ability to support the operators understanding of the current state of the system, predict the near future, and suggest appropriate actions. The proposed system does not control the course of action and allows the human to act at his/her discretion in specific contexts

    Efficient Quantum Computation using Coherent States

    Get PDF
    Universal quantum computation using optical coherent states is studied. A teleportation scheme for a coherent-state qubit is developed and applied to gate operations. This scheme is shown to be robust to detection inefficiency.Comment: 6 pages, 5 figures, extended and modified (in print, PRA

    Gravitational Wave Spectrum in Inflation with Nonclassical States

    Full text link
    The initial quantum state during inflation may evolve to a highly squeezed quantum state due to the amplification of the time-dependent parameter, ωphys(k/a)\omega_{phys}(k/a), which may be the modified dispersion relation in trans-Planckian physics. This squeezed quantum state is a nonclassical state that has no counterpart in the classical theory. We have considered the nonclassical states such as squeezed, squeezed coherent, and squeezed thermal states, and calculated the power spectrum of the gravitational wave perturbation when the mode leaves the horizon.Comment: 21 page

    Structural Relaxation and Frequency Dependent Specific Heat in a Supercooled Liquid

    Get PDF
    We have studied the relation between the structural relaxation and the frequency dependent thermal response or the specific heat, cp(ω)c_p(\omega), in a supercooled liquid. The Mode Coupling Theory (MCT) results are used to obtain cp(ω)c_p(\omega) corresponding to different wavevectors. Due to the two-step relaxation process present in the MCT, an extra peak, in addition to the low frequency peak, is predicted in specific heat at high frequency.Comment: 14 pages, 13 Figure

    Novel 1.5 GPa-strength with 50%-ductility by transformation-induced plasticity of non-recrystallized austenite in duplex steels

    Get PDF
    Needs for steel designs of ultra-high strength and excellent ductility have been an important issue in worldwide automotive industries to achieve energy conservation, improvement of safety, and crashworthiness qualities. Because of various drawbacks in existing 1.5-GPa-grade steels, new development of formable cold-rolled ultra-high-strength steels is essentially needed. Here we show a plausible method to achieve ultra-high strengths of 1.0~1.5 GPa together with excellent ductility above 50% by actively utilizing non-recrystallization region and TRansformation-Induced Plasticity (TRIP) mechanism in a cold-rolled and annealed Fe-Mn-Al-C-based steel. We adopt a duplex microstructure composed of austenite and ultra-fine ferrite in order to overcome low-yield-strength characteristics of austenite. Persistent elongation up to 50% as well as ultra-high yield strength over 1.4 GPa are attributed to well-balanced mechanical stability of non-crystallized austenite with critical strain for TRIP. Our results demonstrate how the non-recrystallized austenite can be a metamorphosis in 1.5-GPa-grade steel sheet design. ? 2017 The Author(s).114Ysciescopu

    Change in fatty liver status and 5-year risk of incident metabolic syndrome: a retrospective cohort study

    Get PDF
    INTRODUCTION: Fatty liver is associated with metabolic syndrome (MetS) but it may also occur without MetS. Whether resolution of fatty liver in the general population affects risk of MetS is unknown. Our aim was to determine whether a change in fatty liver status (either the development of new fatty liver or the resolution of existing fatty liver) would modify the risk of de novo MetS.METHODS:Two thousand eighty-nine people without hypertension, diabetes, and MetS were examined at baseline and at 5-year follow-up using a retrospective cohort study design. Fatty liver status was assessed at baseline and at follow-up by ultrasonography. Adjusted hazard ratios (aHR) and 95 % confidence intervals (CIs) for de novo MetS at follow-up were calculated controlling for the potential confounders, compared to the reference group (people who never had fatty liver at baseline and follow-up).RESULTS:During follow-up, fatty liver developed in 251 people and fatty liver resolved in 112 people. After the adjustment for multiple confounders, persisting fatty liver and incident fatty liver development were associated with de novo MetS, with aHR of 2.60 (95 % CIs [1.61,4.20]) and 3.31 (95 % CIs [1.99,5.51]), respectively. Risk of new MetS in resolved fatty liver group was attenuated with insignificant aHR of 1.29 accompanying 95 % CIs of 0.60 and 2.80.DISCUSSION:Development or maintenance of fatty liver is positively associated with occurrence of new MetS. Resolution of fatty liver status has similar risk of de novo MetS with those who never had fatty liver. Therefore, cautious management is needed with those with fatty liver

    The in vitro effects of dehydroepiandrosterone on human osteoarthritic chondrocytes

    Get PDF
    AbstractObjective: To investigate the in vitro effects of dehydroepiandrosterone (DHEA) on human osteoarthritic chondrocytes.Design: Chondrocytes isolated from human osteoarthritic knee cartilage were three-dimensionally cultured in alginate beads, except for cell proliferation experiment. Cells were treated with DHEA in the presence or absence of IL-1β. The effects on chondrocytes were analyzed using a 3-(4,5-dimethylthiazol-2yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS) assay (for chondrocyte proliferation), a dimethylmethylene blue (DMB) assay (for glycosaminoglycan (GAG) synthesis), and an indole assay (for DNA amount). Gene expressions of type I and II collagen, metalloproteinase-1 and -3 (MMP-1 and -3), and tissue inhibitor of metalloproteinase-1 (TIMP-1) as well as the IL-1β-induced gene expressions of MMP-1 and -3 were analyzed by reverse transcription-polymerase chain reaction (RT-PCR). The protein synthesis of MMP-1 and -3 and TIMP-1 was determined by Western blotting.Results: The treatment of chondrocytes with DHEA did not affect chondrocyte proliferation or GAG synthesis up to 100μM of concentration. The gene expression of type II collagen increased in a dose-dependent manner, while that of type I decreased. DHEA suppressed the expression of MMP-1 significantly at concentrations exceeding 50μM. The gene expression of MMP-3 was also suppressed, but this was without statistical significance. The expression of TIMP-1 was significantly increased by DHEA at concentrations exceeding 10μM. The effects of DHEA on the gene expressions of MMP-1 and -3 were more prominent in the presence of IL-1β, in which DHEA suppressed not only MMP-1, but also MMP-3 at the lower concentrations, 10 and 50μM, respectively. Western blotting results were in agreement with RT-PCR, which indicates that DHEA acts at the gene transcription level.Conclusions: Our study demonstrates that DHEA has no toxic effect on chondrocytes up to 100μM of concentration and has an ability to modulate the imbalance between MMPs and TIMP-1 during OA at the transcription level, which suggest that it has a protective role against articular cartilage loss

    Gravitation with superposed Gauss--Bonnet terms in higher dimensions: Black hole metrics and maximal extensions

    Get PDF
    Our starting point is an iterative construction suited to combinatorics in arbitarary dimensions d, of totally anisymmetrised p-Riemann 2p-forms (2p\le d) generalising the (1-)Riemann curvature 2-forms. Superposition of p-Ricci scalars obtained from the p-Riemann forms defines the maximally Gauss--Bonnet extended gravitational Lagrangian. Metrics, spherically symmetric in the (d-1) space dimensions are constructed for the general case. The problem is directly reduced to solving polynomial equations. For some black hole type metrics the horizons are obtained by solving polynomial equations. Corresponding Kruskal type maximal extensions are obtained explicitly in complete generality, as is also the periodicity of time for Euclidean signature. We show how to include a cosmological constant and a point charge. Possible further developments and applications are indicated.Comment: 13 pages, REVTEX. References and Note Adde
    corecore