112 research outputs found

    Instantons and SL(2,R) Symmetry in Type IIB Supergravity

    Get PDF
    We discuss the relation between the dual formulations of Type IIB supergravity emphasizing the differences between Lorentz and Euclidean signature. We demonstrate how the SL(2,R) symmetry of the usual action is manifested in the solution of the equations of motion with Euclidean signature for the dual theory.Comment: 4 pages, no figure

    Instantons of Type IIB Supergravity in Ten Dimensions

    Full text link
    A family of SO(10) symmetric instanton solutions in Type IIB supergravity is developed. The instanton of least action is a candidate for the low-energy, semiclassical approximation to the {D=--1} brane. Unlike a previously published solution,[GGP] this admits an interpretation as a tunneling amplitude between perturbatively degenerate asymptotic states, but with action twice that found previously. A number of associated issues are discussed such as the relation between the magnetic and electric pictures, an inversion symmetry of the dilaton and the metric, the R×S9R\times S^9 topology of the background, and some properties of the solution in an "instanton frame" corresponding to a Lagrangian in which the dilaton's kinetic energy vanishes.Comment: 15 pages, no figures; Version 2 has revised sections IV and V. Earlier equations are essentially unchanged, but interpretation changed, on advice of counse

    The Effective Potential, the Renormalisation Group and Vacuum Stability

    Get PDF
    We review the calculation of the the effective potential with particular emphasis on cases when the tree potential or the renormalisation-group-improved, radiatively corrected potential exhibits non-convex behaviour. We illustrate this in a simple Yukawa model which exhibits a novel kind of dimensional transmutation. We also review briefly earlier work on the Standard Model. We conclude that, despite some recent claims to the contrary, it can be possible to infer reliably that the tree vacuum does not represent the true ground state of the theory.Comment: 23 pages; 5 figures; v2 includes minor changes in text and additional reference

    The effective potential and the renormalisation group

    Full text link
    We discuss renormalisation group improvement of the effective potential both in general and in the context of O(N)O(N) scalar \p^4 and the Standard Model. In the latter case we find that absolute stability of the electroweak vacuum implies that mH1.95mt189 GeVm_H\geq 1.95m_t-189~GeV, for \as (M_Z) = 0.11. We point out that the lower bound on mHm_H {\it decreases\/} if \as (M_Z) is increased.Comment: 22 pages plus three PostScript figures (appended), Liverpool preprint LTH 288, University of Michigan preprint UM-TH-92-2

    Extended QCD(2) from dimensional projection of QCD(4)

    Get PDF
    We study an extended QCD model in (1+1) dimensions obtained from QCD in 4D by compactifying two spatial dimensions and projecting onto the zero-mode subspace. We work out this model in the large NcN_c limit and using light cone gauge but keeping the equal-time quantization. This system is found to induce a dynamical mass for transverse gluons -- adjoint scalars in QCD(2), and to undergo a chiral symmetry breaking with the full quark propagators yielding non-tachyonic, dynamical quark masses, even in the chiral limit. We study quark-antiquark bound states which can be classified in this model by their properties under Lorentz transformations inherited from 4D. The scalar and pseudoscalar sectors of the theory are examined and in the chiral limit a massless ground state for pseudoscalars is revealed with a wave function generalizing the so called 't Hooft pion solution.Comment: JHEP class, 16 pages, 3 figures. Change in the title, some improvements in section 2, minors changes and comments added in introduction and conclusions. References added. Version appearing in JHE

    Rigid invariance as derived from BRS invariance: The abelian Higgs model

    Get PDF
    Consequences of a symmetry, e.g.\ relations amongst Green functions, are renormalization scheme independently expressed in terms of a rigid Ward identity. The corresponding local version yields information on the respective current. In the case of spontaneous breakdown one has to define the theory via the BRS invariance and thus to construct rigid and current Ward identity non-trivially in accordance with it. We performed this construction to all orders of perturbation theory in the abelian Higgs model as a prelude to the standard model. A technical tool of interest in itself is the use of a doublet of external scalar ``background'' fields. The Callan-Symanzik equation has an interesting form and follows easily once the rigid invariance is established.Comment: 33 pages, Plain Te

    Non--decoupling, triviality and the ρ\rho parameter

    Full text link
    The dependence of the ρ\rho parameter on the mass of the Higgs scalar and the top quark is computed non--perturbatively using the 1/NF1/N_F expansion in the standard model. We find an explicit expression for the ρ\rho parameter that requires the presence of a physical cutoff. This should come as no surprise since the theory is presumably trivial. By taking this cutoff into account, we find that the ρ\rho parameter can take values only within a limited range and has finite ambiguities that are suppressed by inverse powers of the cutoff scale, the so called ``scaling--violations". We find that large deviations from the perturbative results are possible, but only when the cutoff effects are also large.Comment: 16pp, Figures NOT included, harvmac, minor modifications incl. wording, refs., UCLA/92/TEP/23,OHSTPY-HEP-T-92-00

    Defect Production in Slow First Order Phase Transitions

    Get PDF
    We study the formation of vortices in a U(1) gauge theory following a first-order transition proceeding by bubble nucleation, in particular the effect of a low velocity of expansion of the bubble walls. To do this, we use a two-dimensional model in which bubbles are nucleated at random points in a plane and at random times and then expand at some velocity vb<cv_{\rm b}<c. Within each bubble, the phase angle is assigned one of three discrete values. When bubbles collide, magnetic `fluxons' appear: if the phases are different, a fluxon--anti-fluxon pair is formed. These fluxons are eventually trapped in three-bubble collisions when they may annihilate or form quantized vortices. We study in particular the effect of changing the bubble expansion speed on the vortex density and the extent of vortex--anti-vortex correlation.Comment: 13 pages, RevTeX, 15 uuencoded postscript figure

    About the realization of chiral symmetry in QCD2

    Get PDF
    Two dimensional massless Quantum Chromodynamics presents many features which resemble those of the true theory. In particular the spectrum consists of mesons and baryons arranged in flavor multiplets without parity doubling. We analyze the implications of chiral symmetry, which is not spontaneously broken in two dimensions, in the spectrum and in the quark condensate. We study how parity doubling, an awaited consequence of Coleman's theorem, is avoided due to the dimensionality of space-time and confinement. We prove that a chiral phase transition is not possible in the theory.Comment: 9 pages, latex, ftuv/92-

    Entanglement and Nonunitary Evolution

    Get PDF
    We consider a collapsing relativistic spherical shell for a free quantum field. Once the center of the wavefunction of the shell passes a certain radius R, the degrees of freedom inside R are traced over. We show that an observer outside this region will determine that the evolution of the system is nonunitary. We argue that this phenomenon is generic to entangled systems, and discuss a possible relation to black hole physics.Comment: 14 pages, 1 figure; Added a clarification regarding the relation with black hole physic
    corecore