158 research outputs found

    Embryonic development of selectively vulnerable neurons in Parkinson's disease

    Get PDF
    A specific set of brainstem nuclei are susceptible to degeneration in Parkinson’s disease. We hypothesise that neuronal vulnerability reflects shared phenotypic characteristics that confer selective vulnerability to degeneration. Neuronal phenotypic specification is mainly the cumulative result of a transcriptional regulatory program that is active during the development. By manual curation of the developmental biology literature, we comprehensively reconstructed an anatomically resolved cellular developmental lineage for the adult neurons in five brainstem regions that are selectively vulnerable to degeneration in prodromal or early Parkinson’s disease. We synthesised the literature on transcription factors that are required to be active, or required to be inactive, in the development of each of these five brainstem regions, and at least two differentially vulnerable nuclei within each region. Certain transcription factors, e.g., Ascl1 and Lmx1b, seem to be required for specification of many brainstem regions that are susceptible to degeneration in early Parkinson’s disease. Some transcription factors can even distinguish between differentially vulnerable nuclei within the same brain region, e.g., Pitx3 is required for specification of the substantia nigra pars compacta, but not the ventral tegmental area. We do not suggest that Parkinson’s disease is a developmental disorder. In contrast, we consider identification of shared developmental trajectories as part of a broader effort to identify the molecular mechanisms that underlie the phenotypic features that are shared by selectively vulnerable neurons. Systematic in vivo assessment of fate determining transcription factors should be completed for all neuronal populations vulnerable to degeneration in early Parkinson’s disease

    Comparative Study Of Electron And Positron Scattering By H2: The Role Of The Σg+2 Feshbach Resonance

    Get PDF
    We report two-channel calculations for e± - H2 scattering (X Σg+1 →X Σg+1, B Σu+3 for electrons and X Σg+1 →X Σg+1, B Σu+1 for positrons). We provide independent estimates of the electron Σg+2 Feshbach resonance (though for a limited range of interatomic distances) in good agreement with benchmark calculations. Resonance enhanced vibrational excitation cross sections were obtained with a time-dependent local complex potential approach and compare favorably with recent calculations and experimental data. The time resolution also provides good physical insight into the transient dynamics. In a previous work, we predicted the existence of a positron-hydrogen Σg+2 Feshbach resonance based on a fixed-nuclei scattering calculation (equilibrium geometry) that was not observed experimentally. We further investigate the resonance potential in this study and our results indicate that the Σg+2 potential crosses the B Σu+1 state just above the equilibrium interatomic distance of the ground state, giving rise to a short-lived transient. Though the positronium formation channel could also play a role, the state crossing sheds light on the controversy between theory and experiment. © 2008 The American Physical Society.784Schulz, G.J., (1973) Rev. Mod. Phys., 45, p. 423. , 10.1103/RevModPhys.45.423Grill, A., (1994) Cold Plasma Materials Fabrication: From Fundamentals to Applications, , IEEE Press, New YorkBoudaïffa, B., Cloutier, P., Hunting, D., Huels, M.A., Sanche, L., (2000) Science, 287, p. 1658. , 10.1126/science.287.5458.1658Pan, X., Cloutier, P., Hunting, D., Sanche, L., (2003) Phys. Rev. Lett., 90, p. 208102. , 10.1103/PhysRevLett.90.208102De Carvalho, C.R.C., Varella Do N, M.T., Lima, M.A.P., Da Silva, E.P., (2003) Phys. Rev. A, 68, p. 062706. , 10.1103/PhysRevA.68.062706Do Varella, N.M.T., De Oliveira, E.M., Lima, M.A.P., (2008) Nucl. Instrum. Methods Phys. Res. B, 266, p. 435. , 10.1016/j.nimb.2007.12.020Gribakin, G.F., (2002) Nucl. Instrum. Methods Phys. Res. B, 192, p. 26. , 10.1016/S0168-583X(02)00702-4Gribakin, G.F., Lee, C.M.R., (2006) Phys. Rev. Lett., 97, p. 193201. , 10.1103/PhysRevLett.97.193201Gilbert, S.J., Barnes, L.D., Sullivan, J.P., Surko, C.M., (2002) Phys. Rev. Lett., 88, p. 043201. , 10.1103/PhysRevLett.88.043201Barnes, L.D., Gilbert, S.J., Surko, C.M., (2003) Phys. Rev. A, 67, p. 032706. , 10.1103/PhysRevA.67.032706Bromley, M.W.J., Mitroy, J., (2006) Phys. Rev. Lett., 97, p. 183402. , 10.1103/PhysRevLett.97.183402Mitroy, J., Bromley, M.W.J., (2007) Phys. Rev. Lett., 98, p. 173001. , 10.1103/PhysRevLett.98.173001Comer, J., Read, F.H., (1971) J. Phys. B, 4, p. 368. , 10.1088/0022-3700/4/3/009Joyez, G., Comer, J., Read, F.H., (1973) J. Phys. B, 6, p. 2427. , 10.1088/0022-3700/6/11/038Stibbe, D.T., Tennyson, J., (1997) Phys. Rev. Lett., 79, p. 4116. , 10.1103/PhysRevLett.79.4116Stibbe, D.T., Tennyson, J., (1997) J. Phys. B, 30, p. 301. , 10.1088/0953-4075/30/9/003Stibbe, D.T., Tennyson, J., (1998) J. Phys. B, 31, p. 815. , 10.1088/0953-4075/31/4/027Celiberto, R., Janev, R.K., Wadehra, J.M., Laricchiuta, A., (2008) Phys. Rev. A, 77, p. 012714. , 10.1103/PhysRevA.77.012714Da Silva, A.J.R., Lima, M.A.P., Brescansin, L.M., McKoy, V., (1990) Phys. Rev. A, 41, p. 2903. , 10.1103/PhysRevA.41.2903Do Varella, N.M.T., De Carvalho, C.R.C., Lima, M.A.P., (2001) New Directions in Antimatter Chemistry and Physics, , edited by C. M. Surko and F. A. Gianturco (Kluwer, AmsterdamSullivan, J.P., Gilbert, S.J., Buckman, S.J., Surko, C.M., (2001) J. Phys. B, 34, p. 467. , 10.1088/0953-4075/34/15/102Arretche, F., Da Costa, R.F., D'A. Sanchez, S., Hisi, A.N.S., De Oliveira, E.M., Do Varella, N.M.T., Lima, M.A.P., (2006) Nucl. Instrum. Methods Phys. Res. B, 247, p. 13. , 10.1016/j.nimb.2006.01.032Marler, J.P., Surko, C.M., (2005) Phys. Rev. A, 72, p. 062702. , 10.1103/PhysRevA.72.062702Capitelli, M., Gorse, C., (2005) IEEE Trans. Plasma Sci., 33, p. 1832. , 10.1109/TPS.2005.860084Khare, B.N., Meyyappan, M., Cassell, A.M., Nguyen, C.V., Han, J., (2002) Nano Lett., 2, p. 73. , 10.1021/nl015646jZheng, G., Li, Q., Jiang, K., Zhang, X., Chen, J., Ren, Z., Fan, S., (2007) Nano Lett., 7, p. 1622. , 10.1021/nl070585wFeshbach, H., (1958) Ann. Phys. (N.Y.), 5, p. 357. , 10.1016/0003-4916(58)90007-1Feshbach, H., (1962) Ann. Phys. (N.Y.), 19, p. 287. , 10.1016/0003-4916(62)90221-XChen, J.C.Y., (1966) Phys. Rev., 148, p. 66. , 10.1103/PhysRev.148.66O'Malley, T.F., (1966) Phys. Rev., 150, p. 14. , 10.1103/PhysRev.150.14Bardsley, J.N., Herzenberg, A., Mandl, F., (1966) Proc. Phys. Soc. London, 89, p. 321. , 10.1088/0370-1328/89/2/313Bardsley, J.N., (1968) J. Phys. B, 1, p. 349. , 10.1088/0022-3700/1/3/303Dubé, L., Herzenberg, A., (1979) Phys. Rev. A, 20, p. 194. , 10.1103/PhysRevA.20.194Domcke, W., Cederbaum, L.S., (1977) Phys. Rev. A, 16, p. 1465. , 10.1103/PhysRevA.16.1465Hazi, A.U., Rescigno, T.N., Kurilla, M., (1981) Phys. Rev. A, 23, p. 1089. , 10.1103/PhysRevA.23.1089Born, M., Oppenheimer, J.R., (1927) Ann. Phys., 84, p. 457. , 10.1002/andp.19273892002Birtwistle, D.T., Herzenberg, A., (1971) J. Phys. B, 4, p. 53. , 10.1088/0022-3700/4/1/009McCurdy, C.W., Turner, J.L., (1983) J. Chem. Phys., 78, p. 6773. , 10.1063/1.444677Takatsuka, K., McKoy, V., (1984) Phys. Rev. A, 30, p. 1734. , 10.1103/PhysRevA.30.1734Lima, M.A.P., McKoy, V., (1988) Phys. Rev. A, 38, p. 501. , 10.1103/PhysRevA.38.501Germano, J.S.E., Lima, M.A.P., (1993) Phys. Rev. A, 47, p. 3976. , 10.1103/PhysRevA.47.3976Lino, J.L.S., Germano, J.S.E., Da Silva, E.P., Lima, M.A.P., (1998) Phys. Rev. A, 58, p. 3502. , 10.1103/PhysRevA.58.3502Varella Do N, M.T., Lima, M.A.P., (2007) Phys. Rev. A, 76, p. 052701. , 10.1103/PhysRevA.76.052701Gibson, T.L., Lima, M.A.P., McKoy, V., Huo, W.M., (1987) Phys. Rev. A, 35, p. 2473. , 10.1103/PhysRevA.35.2473Hunt, W.J., Goddart Iii, A., (1969) Chem. Phys. Lett., 3, p. 414. , 10.1016/0009-2614(69)80154-5Takahashi, K., Ikeda, K., (1993) J. Chem. Phys., 99, p. 8680. , 10.1063/1.465592Kosloff, D., Kosloff, R., (1983) J. Comput. Phys., 52, p. 35. , 10.1016/0021-9991(83)90015-3Kosloff, R., (1988) J. Phys. Chem., 92, p. 2087. , 10.1021/j100319a003Kolos, W., Wolniewicz, L., (1965) J. Chem. Phys., 43, p. 2429. , 10.1063/1.1697142Kolos, W., Rychlewski, J., (1995) J. Mol. Spectrosc., 169, p. 341. , 10.1006/jmsp.1995.1028Takatsuka, K., Hashimoto, N., (1995) J. Chem. Phys., 103, p. 6057. , 10.1063/1.470434Breit, G., Wigner, E.P., (1936) Phys. Rev., 49, p. 519. , 10.1103/PhysRev.49.519Orel, A.E., Kulander, K.C., Rescigno, T.N., (1995) Phys. Rev. Lett., 74, p. 4807. , 10.1103/PhysRevLett.74.4807Haxton, D.J., McCurdy, C.W., Rescigno, T.N., (2006) Phys. Rev. A, 73, p. 062724. , 10.1103/PhysRevA.73.062724Sullivan, J.P., Marler, J.P., Gilbert, S.J., Buckman, S.J., Surko, C.M., (2001) Phys. Rev. Lett., 87, p. 073201. , 10.1103/PhysRevLett.87.073201Zhou, S., Li, H., Kauppila, W.E., Kwan, C.K., Stein, T.S., (1997) Phys. Rev. A, 55, p. 361. , 10.1103/PhysRevA.55.361Kwan, C.K., Kauppila, W.E., Nazaran, S., Przybyla, D., Scahill, N., Stein, T.S., (1998) Nucl. Instrum. Methods Phys. Res. B, 143, p. 61. , 10.1016/S0168-583X(97)00936-

    Communication: Transient Anion States Of Phenol...(h2o) N (n = 1, 2) Complexes: Search For Microsolvation Signatures

    Get PDF
    We report on the shape resonance spectra of phenol-water clusters, as obtained from elastic electron scattering calculations. Our results, along with virtual orbital analysis, indicate that the well-known indirect mechanism for hydrogen elimination in the gas phase is significantly impacted on by microsolvation, due to the competition between vibronic couplings on the solute and solvent molecules. This fact suggests how relevant the solvation effects could be for the electron-driven damage of biomolecules and the biomass delignification [E. M. de Oliveira et al., Phys. Rev. A 86, 020701(R) (2012)]. We also discuss microsolvation signatures in the differential cross sections that could help to identify the solvated complexes and access the composition of gaseous admixtures of these species. © 2014 AIP Publishing LLC.1415NSF; National Stroke FoundationSanche, L., (2005) Eur. Phys. J. D, 35, p. 367. , For a review, see, 10.1140/epjd/e2005-00206-6Wang, C.-R., Nguyen, J., Lu, Q.-B., (2009) J. Am. Chem. Soc., 131, p. 11320. , 10.1021/ja902675gBaccarelli, I., Bald, I., Gianturco, F.A., Illenberger, E., Kopyra, J., (2011) Phys. Rep., 508, p. 1. , 10.1016/j.physre2011.06.004Bettega, M.H.F., Lima, M.A.P., (2007) J. Chem. Phys., 126, p. 194317. , 10.1063/1.2739514De Oliveira, E.M., Lima, M.A.P., Bettega, M.H.F., Sanchez, S.D.A., Da Costa, R.F., Varella, M.T.D.N., (2010) J. Chem. Phys., 132, p. 204301. , 10.1063/1.3428620Baccarelli, I., Grandi, A., Gianturco, F.A., Lucchese, R.R., Sanna, N., (2006) J. Phys. Chem. B, 110, p. 26240. , 10.1021/jp065872nFabrikant, I.I., Caprasecca, S., Gallup, G.A., Gorfinkiel, J.D., (2012) J. Chem. Phys., 136, p. 184301. , 10.1063/1.4706604Freitas, T.C., Lima, M.A.P., Canuto, S., Bettega, M.H.F., (2009) Phys. Rev. A, 80, p. 062710. , 10.1103/PhysRevA.80.062710Freitas, T.C., Coutinho, K., Varella, M.T.D.N., Lima, M.A.P., Canuto, S., Bettega, M.H.F., (2013) J. Chem. Phys., 138, p. 174307. , 10.1063/1.4803119De Oliveira, E.M., Sanchez, S.D.A., Bettega, M.H.F., Natalense, A.P.P., Lima, M.A.P., Do Varella N, M.T., (2012) Phys. Rev. A, 86, pp. 020701-R. , 10.1103/PhysRevA.86.020701Jordan, K.D., Michejda, J.A., Burrow, P.D., (1976) J. Am. Chem. Soc., 98, p. 7189. , 10.1021/ja00439a014Khatymov, R.V., Muftakhov, M.V., Mazunov, V.A., (2003) Rapid Commun. Mass Spectrom., 17, p. 2327. , 10.1002/rcm.1197Dos Santos, J.S., Da Costa, R.F., Varella, M.T.D.N., (2012) J. Chem. Phys., 136, p. 084307. , 10.1063/1.3687345Bettega, M.H.F., Ferreira, L.G., Lima, M.A.P., (1993) Phys. Rev. A, 47, p. 1111. , 10.1103/PhysRevA.47.1111Da Costa, R.F., Da Paixão, F.J., Lima, M.A.P., (2004) J. Phys. B, 37, pp. L129. , 10.1088/0953-4075/37/6/L03Takatsuka, K., McKoy, V., (1981) Phys. Rev. A, 24, p. 2473. , 10.1103/PhysRevA.24.2473Takatsuka, K., McKoy, V., (1984) Phys. Rev. A, 30, p. 1734. , 10.1103/PhysRevA.30.1734Barreto, R.C., Coutinho, K., Georg, H.C., Canuto, S., (2009) Phys. Chem. Chem. Phys., 11, p. 1388. , 10.1039/b816912h(1998) CRC Handbook of Chemistry and Physics, , 79th ed., edited by D. R. Lide (CRC, Boca Raton)http://dx.doi.org/10.1063/1.4892066Nenner, I., Schulz, G.J., (1975) J. Chem. Phys., 62, p. 1747. , 10.1063/1.430700Winstead, C., McKoy, V., (2007) Phys. Rev. Lett., 98, p. 113201. , 10.1103/PhysRevLett.98.113201Winstead, C., McKoy, V., (2007) Phys. Rev. A, 76, p. 012712. , 10.1103/PhysRevA.76.012712Mažín, Z., Gorfinkiel, J.D., (2011) J. Chem. Phys., 135, p. 144308. , 10.1063/1.3650236Modelli, A., Burrow, P.W., (2004) J. Phys. Chem. A, 108, p. 5721. , 10.1021/jp048759aSchmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Montgomery, J.A., (1993) J. Comput. Chem., 14, p. 1347. , 10.1002/jcc.540141112Kossoski, F., Bettega, M.H.F., Varella, M.T.D.N., (2014) J. Chem. Phys., 140, p. 024317. , 10.1063/1.4861589Gallup, G., Burrow, P., Fabrikant, I., (2009) Phys. Rev. A, 79, p. 042701. , 10.1103/PhysRevA.79.042701Gallup, G., Burrow, P., Fabrikant, I., (2009) Phys. Rev. A, 80, p. 046702. , 10.1103/PhysRevA.80.046702Scheer, A.M., Mozejko, P., Gallup, G.A., Burrow, P.D., (2007) J. Chem. Phys., 126, p. 174301. , 10.1063/1.2727460Asmis, K.R., Allan, M., Pyrrole Data in the Gallery of Unpublished EEL Spectra, , http://www.chem.unifr.ch/ma/dir_allan/pyrrole_EELS.pdfHaxton, D.J., McCurdy, C.W., Rescigno, T.N., (2007) Phys. Rev. A, 75, p. 012710. , 10.1103/PhysRevA.75.012710Bode, B.M., Gordon, M.S., (1998) J. Mol. Graphics Modell., 16, p. 133. , 10.1016/S1093-3263(99)00002-9Fuke, K., Kaya, K., (1983) Chem. Phys. Lett., 94, p. 97. , 10.1016/0009-2614(83)87218-

    Elastic Scattering Of Low-energy Electron By Lignin Precursors

    Get PDF
    We present cross sections for electron collisions with monolignol precursors obtained with the Schwinger Multichannel method. For Cs phenol system, π* resonances are found in the A" irreducible representation. So, mechanisms for dissociative electron attachment could give rise if σ* resonances are found in the monolignols. © Published under licence by IOP Publishing Ltd.388PART 5De Cerqueira Leite, R.C., (2009) Energy, 34, p. 655. , 10.1016/j.energy.2008.11.001 0360-5442Oliveira, C., (2008) Appl. Phys. Lett., 93, p. 041503. , 10.1063/1.2967016 0003-6951Boudaïffa, B., (2000) Sience, 287, p. 1658. , 10.1126/science.287.5458.1658 0036-8075Da Costa, R.F., (2004) J. Phys. B: At. Mol. Phys., 37, p. 129. , 0953-4075 L0
    • …
    corecore