11 research outputs found

    Pyrogenic organic matter from palaeo-fires during the Holocene: A case study in a sequence of buried soils at the Central Ebro Basin (NE Spain)

    Get PDF
    We studied the fire record and its environmental consequences during the Holocene in the Central Ebro Basin. This region is very sensitive to environmental changes due to its semiarid conditions, lithological features and a continuous human presence during the past 6000 years. The study area is a 6 m buried sequence of polycyclic soils developed approximately 9500 years ago that is exceptionally well preserved and encompasses four sedimentary units. The content and size distribution of macroscopic charcoal fragments were determined throughout the soil sequence and the analysis of the composition of charcoal, litter and sediments via analytical pyrolysis (Py-GC/MS). The high amount of charcoal fragments recovered in most horizons highlights the fire frequencies since the beginning of the Neolithic, most of which were probably of anthropogenic origin. In some soil horizons where charcoal was not found, we detected a distribution pattern of lipid compounds that could be related to biomass burning. On the other hand, the low number of pyrolysates in the charcoal could be attributed to high-intensity fires. No clear pattern was found in the composition of pyrolysates related to the age of sediments or vegetation type. The most ancient soil (Unit 1) was the richest in charcoal content and contains a higher proportion of larger fragments (>4 mm), which is consistent with the burning of a relatively dense vegetation cover. This buried soil has been preserved in situ, probably due to the accumulation of sedimentary materials because of a high-intensity fire. In addition, the pyrogenic C in this soil has some plant markers that could indicate a low degree of transformation. In Units 2–4, both the amount of charcoals and the proportions of macrofragments >4 mm are lower than those in Unit 1, which coincides with a more open forest and the presence of shrubs and herbs. The preservation of this site is key to continuing with studies that contribute to a better assessment of the consequences of future disturbances, such as landscape transformation and climate change

    Cell wall immobilization and antioxidant status of Xanthoria parietina thalli exposed to cadmium

    No full text
    Total and cell wall-bound cadmium and the major antioxidants were measured in thalli of the lichen Xanthoria parietina (L.) Th. Fr. exposed to two Cd concentrations, namely 4.5 or 9.0 ÎĽm, in liquid medium during exposure periods of either 24 or 48 h. Total Cd in the thalli was within the range of previous field measurements and was proportional to the exposure concentration, but less than proportional with respect to exposure duration. More than half of the total Cd was immobilised by the cell wall. The adopted conditions of Cd stress caused: (i) no changes in dry weight and protein concentration; (ii) an increase in the level of ascorbic acid and a decrease in that of reduced glutathione, as well as an increase in guaiacol peroxidase activity; (iii) no changes or moderate decreases in the activities of superoxide dismutase, catalase, dehydroascorbate-, NADPH-dependent glutathione disulfide-, and monodehydroascorbate reductases and of ascorbate peroxidase; (iv) an increase of the level of thiobarbituric acid-reactive substances, assumed to reflect malondialdehyde formation arising from membrane lipid peroxidation. Thus, X. parietina might withstand realistic levels of Cd stress by: (1) intercepting the heavy metal at cell wall level, (2) the intervention of antioxidant metabolites, and (3) a moderate increase in guaiacol peroxidase activit

    Cadmium distribution and effects on ultrastructure and chlorophyll status in photobionts and mycobionts of Xanthoria parietina

    No full text
    In this work, we tried to go deeper inside distribution and toxicity of cadmium (Cd) in the macrolichen Xanthoria parietina (L.) Th. Fr. Thalli of this species were treated with 0 (control), 4.5, 9, 18, or 36 mM Cd for 24 or 48 hours. Transmission electron microscopy, X-ray microanalysis, and electron energy loss spectroscopy were exploited to study distribution and ultrastructural effects of Cd in thalli; spectrophotometric techniques were utilized for measuring Cd effects on chlorophyll (Chl) content; light fluorescence microscopy was used to evaluate Chl autofluorescence. The highest Cd concentration caused ultrastructural alterations both in the mycobiont and in the photobiont, more severe in the latter, decreased total Chl content and progressively quenched Chl autofluorescence. Cell wall immobilization was observed in both bionts, and evidence pointing to a Cd-binding ability by the concentric bodies in the mycobiont was also obtained. Lower Cd concentrations led to slight or even no effects on thallus structures and on Chl content and autofluorescence. The results obtained suggest that: (1) among the two bionts, the algal partner appears to be more susceptible to Cd stress, probably because of the presence of delicate and sensitive components such as the chloroplast and photosynthetic pigments; (2) a concentration threshold exists for the occurrence of evident structural and functional damage in X. parietina thalli exposed to Cd
    corecore