14 research outputs found
Mechanism of polarization of Listeria monocytogenes surface protein ActA
The polar distribution of the ActA protein on the surface of the Gram-positive intracellular bacterial pathogen, Listeria monocytogenes, is required for bacterial actin-based motility and successful infection. ActA spans both the bacterial membrane and the peptidoglycan cell wall. We have directly examined the de novo ActA polarization process in vitro by using an ActA–RFP (red fluorescent protein) fusion. After induction of expression, ActA initially appeared at distinct sites along the sides of bacteria and was then redistributed over the entire cylindrical cell body through helical cell wall growth. The accumulation of ActA at the bacterial poles displayed slower kinetics, occurring over several bacterial generations. ActA accumulated more efficiently at younger, less inert poles, and proper polarization required an optimal balance between protein secretion and bacterial growth rates. Within infected host cells, younger generations of L. monocytogenes initiated motility more quickly than older ones, consistent with our in vitro observations of de novo ActA polarization. We propose a model in which the polarization of ActA, and possibly other Gram-positive cell wall-associated proteins, may be a direct consequence of the differential cell wall growth rates along the bacterium and dependent on the relative rates of protein secretion, protein degradation and bacterial growth
Large-amplitude driving of a superconducting artificial atom: Interferometry, cooling, and amplitude spectroscopy
Superconducting persistent-current qubits are quantum-coherent artificial
atoms with multiple, tunable energy levels. In the presence of large-amplitude
harmonic excitation, the qubit state can be driven through one or more of the
constituent energy-level avoided crossings. The resulting
Landau-Zener-Stueckelberg (LZS) transitions mediate a rich array of
quantum-coherent phenomena. We review here three experimental works based on
LZS transitions: Mach-Zehnder-type interferometry between repeated LZS
transitions, microwave-induced cooling, and amplitude spectroscopy. These
experiments exhibit a remarkable agreement with theory, and are extensible to
other solid-state and atomic qubit modalities. We anticipate they will find
application to qubit state-preparation and control methods for quantum
information science and technology.Comment: 13 pages, 5 figure