795 research outputs found

    Cinema and society: The construction of male and female characters in late francoism ‘landismo’ [Cine y Sociedad: La construcción de los personajes masculinos y femeninos en el ‘landismo’ tardofranquista]

    Get PDF
    Este trabajo parte de las relaciones existentes entre la teoría del cine y su dimensión sociológica para formular un análisis sobre el ‘landismo’, uno de los fenómenos con implicaciones sociales más relevantes en la historia del cine español. En concreto, se sintetizan las principales estrategias narrativas empleadas en un corpus de 19 largometrajes que construyen una imagen recurrente de la masculinidad y la feminidad a través de los personajes principales. Del estudio se concluye un rol contrapuesto de hombres y mujeres en las relaciones de pareja, lo cual no impide la consecución de la estabilidad afectiva y familiar.This work is based on the relationship between film theory and its sociological dimension, to formulate an analysis of ‘landismo’, one of the most important social phenomena in the history of Spanish cinema. Specifically, this study synthesises the main narrative strategies employed in a corpus of 19 films that build a recurring image of masculinity and femininity through the main characters. The study concludes an opposed role between men and women inside relationships, which does not prevent the achievement of personal and family stability

    Linking activity and function to ecosystem dynamics in a coastal bacterioplankton community

    Get PDF
    For bacterial communities containing hundreds to thousands of distinct populations, connecting functional processes and environmental dynamics at high taxonomic resolution has remained challenging. Here we use the expression of ribosomal proteins (%RP) as a proxy for in situ activity of 200 taxa within 20 metatranscriptomic samples in a coastal ocean time series encompassing both seasonal variability and diel dynamics. %RP patterns grouped the taxa into seven activity clusters with distinct profiles in functional gene expression and correlations with environmental gradients. Clusters 1-3 had their highest potential activity in the winter and fall, and included some of the most active taxa, while Clusters 4-7 had their highest potential activity in the spring and summer. Cluster 1 taxa were characterized by gene expression for motility and complex carbohydrate degradation (dominated by Gammaproteobacteria and Bacteroidetes), and Cluster 2 taxa by transcription of genes for amino acid and aromatic compound metabolism and aerobic anoxygenic phototrophy (Roseobacter). Other activity clusters were enriched in transcripts for proteorhodopsin and methylotrophy (Cluster 4; SAR11 and methylotrophs), photosynthesis and attachment (Clusters 5 and 7; Synechococcus, picoeukaryotes, Verucomicrobia, and Planctomycetes), and sulfur oxidation (Cluster 7; Gammaproteobacteria). The seasonal patterns in activity were overlain, and sometimes obscured, by large differences in %RP over shorter day-night timescales. Seventy-eight taxa, many of them heterotrophs, had a higher %RP activity index during the day than night, indicating a strong diel activity rhythm at this coastal site. Emerging from these taxonomically-and time-resolved estimates of in situ microbial activity are predictions of specific ecological groupings of microbial taxa in a dynamic coastal environment

    Validación a largo plazo de datos de nivel 3 de tierra de SMOS con medidas de ELBARA-II en la Valencia Anchor Station

    Full text link
    Revista oficial de la Asociación Española de Teledetección[EN] The Soil Moisture and Ocean Salinity (SMOS) mission was launched on 2nd November 2009 with the objective of providing global estimations of soil moisture and sea salinity. The main activity of the Valencia Anchor Station (VAS) is currently to assist in a long-term validation of SMOS land products. This study focus on a level 3 SMOS data validation with in situ measurements carried out in the period 2010-2012 over the VAS. ELBARA-II radiometer is placed in the VAS area, observing a vineyard field considered as representative of a major proportion of an area of 50×50 km, enough to cover a SMOS footprint. Brightness temperatures (TB) acquired by ELBARA-II have been compared to those observed by SMOS at the same dates and time. They were also used for the L-MEB model inversion to retrieve soil moisture (SM), which later on have been compared to those provided by SMOS as level 3 data. A good correlation between both TB datasets was found, improving year by year, mainly due to the decrease of precipitations in the analyzed period and the mitigation of radio frequency interferences at L-band. The larger homogeneity of the radiometer footprint as compared to SMOS explains the higher variability of its TB. Periods of more intense precipitation (spring and autumn) also presented higher SM, which corroborates the consistency of SM retrieved from ELBARA-II’s observations. However, the results show that SMOS level 3 data underestimate SM as compared to ELBARA-II’s, probably due to the influence of the small soil fraction which is not cultivated in vineyards. SMOS estimations in descending orbit (6 pm) had better quality (higher correlation, lower RMSE and bias) than the ones in ascending orbit (6 am, when there is a higher soil moisture). Guardar / Salir Siguiente >[ES] La misión de SMOS (Soil Moisture and Ocean Salinity) se lanzó el 2 de Noviembre de 2009 con el objetivo de proporcionar datos de humedad del suelo y salinidad del mar. La principal actividad de la conocida como Valencia Anchor Station(VAS) es asistir en la validación a largo plazo de productos de suelo de SMOS. El presente estudio se centra en una validación de datos de nivel 3 de SMOS en la VAS con medidas in situ tomadas en el periodo 2010-2012. El radiómetro ELBARA-II está situado dentro de los confines de la VAS, observando un campo de viñedos que se con-sidera representativo de una gran proporción de un área de 50×50 km, suficiente para cubrir un footprint de SMOS. Las temperaturas de brillo (TB) adquiridas por ELBARA-II se compararon con las observadas por SMOS en las mismas fechas y horas. También se utilizó la inversión del modelo L-MEB con el fin de obtener humedades de suelo (SM) que, posteriormente, se compararon con datos de nivel 3 de SMOS. Se ha encontrado una buena correlación entre ambas series de TB, con mejoras año tras año, achacable fundamentalmente a la disminución de precipitaciones en el perio-do objeto de estudio y a la mitigación de las interferencias por radiofrecuencia en banda L. La mayor homogeneidad del footprintdel radiómetro ELBARA-II frente al de SMOS explica la mayor variabilidad de sus TB. Los periodos de preci-pitación más intensa (primavera y otoño) también son de mayor SM, lo que corrobora la consistencia de los resultados de SM simulados a través de las observaciones del radiómetro. Sin embargo, se debe resaltar una subestimación por parte de SMOS de los valores de SM respecto a los obtenidos por ELBARA-II, presumiblemente debido a la influencia que la pequeña fracción de suelo no destinado al cultivo de la vid tiene sobre SMOS. Las estimaciones por parte de SMOS en órbita descendente (6 p.m.) resultaron de mayor calidad (mayor correlación y menores RMSE y bias) que en órbita ascendente (6 a.m., momento de mayor humedad de suelo).This work is carried out within the framework of the project MIDAS-7/UVEG Productos y Aplicaciones Avanzados de SMOS y Futuras Misiones (Parte UVEG) from the Spanish Research Programme on Space, Spanish Ministry for Economy and Competitiveness.Fernandez-Moran, R.; Wigneron, JP.; López-Baeza, E.; Miernecki, M.; Salgado-Hernanz, P.; Coll, M.; Kerr, YH.... (2015). Towards a long-term dataset of ELBARA-II measurements assisting SMOS level-3 land product and algorithm validation at the Valencia Anchor Station. Revista de Teledetección. (43):55-62. doi:10.4995/raet.2015.2297.SWORD55624

    Transcriptomic and proteomic responses of the oceanic diatom Pseudo-nitzschia granii to iron limitation

    Get PDF
    Diatoms are a highly successful group of photosynthetic protists that often thrive under adverse environmental conditions. Members of the genus Pseudo-nitzschia are ecologically important diatoms which are able to subsist during periods of chronic iron limitation and form dense blooms following iron fertilization events. The cellular strategies within diatoms that orchestrate these physiological responses to variable iron concentrations remain largely uncharacterized. Using a combined transcriptomic and proteomic approach, we explore the exceptional ability of a diatom isolated from the iron-limited Northeast Pacific Ocean to reorganize its intracellular processes as a function of iron. We compared the molecular responses of Pseudo-nitzschia granii observed under iron-replete and iron-limited growth conditions to those of other model diatoms. Iron-coordinated molecular responses demonstrated some agreement between gene expression and protein abundance, including iron-starvation-induced-proteins, a putative iron transport system and components of photosynthesis and the Calvin cycle. Pseudo-nitzschia granii distinctly differentially expresses genes encoding proteins involved in iron-independent photosynthetic electron transport, urea acquisition and vitamin synthesis. We show that P. granii is unique among studied diatoms in its physiology stemming from distinct cellular responses, which may underlie its ability to subsist in low iron regions and rapidly bloom to outcompete other diatom taxa following iron enrichment

    Bacterial dimethylsulfoniopropionate degradation genes in the oligotrophic North Pacific subtropical gyre

    Get PDF
    Dimethylsulfoniopropionate (DMSP) is an organic sulfur compound that is rapidly metabolized by marine bacteria either by cleavage to dimethylsulfide (DMS) or demethylation to 3-methiolpropionate. The abundance and diversity of genes encoding bacterial DMS production (dddP) and demethylation (dmdA) were measured in the North Pacific subtropical gyre (NPSG) between May 2008 and February 2009 at Station ALOHA (22°45=N, 158°00=W) at two depths: 25mand the deep chlorophyll maximum (DCM;~100 m). The highest abundance of dmdA genes was in May 2008 at 25 m, with~16.5% of cells harboring a gene in one of the eight subclades surveyed, while the highest abundance of dddP genes was in July 2008 at 25 m, with~2% of cells harboring a gene. The dmdA gene pool was consistently dominated by homologs from SAR11 subclades, which was supported by findings in metagenomic data sets derived from Station ALOHA. Expression of the SAR11 dmdA genes was low, with typical transcript:gene ratios between 1:350 and 1:1,400. The abundance of DMSP genes was statistically different between 25mand the DCM and correlated with a number of environmental variables, including primary production, photosynthetically active radiation, particulate DMSP, and DMS concentrations. At 25 m, dddP abundance was positively correlated with pigments that are diagnostic of diatoms; at the DCM, dmdA abundance was positively correlated with temperature. Based on gene abundance, we hypothesize that SAR11 bacterioplankton dominate DMSP cycling in the oligotrophic NPSG, with lesser but consistent involvement of other members of the bacterioplankton community

    Coastal ocean metagenomes and curated metagenome-assembled genomes from Marsh Landing, Sapelo Island (Georgia, USA)

    Get PDF
    Microbes play a dominant role in the biogeochemistry of coastal waters, which receive organic matter from diverse sources. We present metagenomes and 45 metagenome-assembled genomes (MAGs) from Sapelo Island, Georgia, to further understand coastal microbial populations. Notably, four MAGs are archaea, with two Thaumarchaeota and two marine group II Euryarchaeota

    Analyzing gene expression from marine microbial communities using environmental transcriptomics

    Get PDF
    Analogous to metagenomics, environmental transcriptomics (metatranscriptomics) retrieves and sequences environmental mRNAs from a microbial assemblage without prior knowledge of what genes the community might be expressing. Thus it provides the most unbiased perspective on community gene expression in situ. Environmental transcriptomics protocols are technically difficult since prokaryotic mRNAs generally lack the poly(A) tails that make isolation of eukaryotic messages relatively straightforward 1 and because of the relatively short half lives of mRNAs 2. In addition, mRNAs are much less abundant than rRNAs in total RNA extracts, thus an rRNA background often overwhelms mRNA signals. However, techniques for overcoming some of these difficulties have recently been developed. A procedure for analyzing environmental transcriptomes by creating clone libraries using random primers to reverse-transcribe and amplify environmental mRNAs was recently described was successful in two different natural environments, but results were biased by selection of the random primers used to initiate cDNA synthesis 3. Advances in linear amplification of mRNA obviate the need for random primers in the amplification step and make it possible to use less starting material decreasing the collection and processing time of samples and thereby minimizing RNA degradation 4.In vitro transcription methods for amplifying mRNA involve polyadenylating the mRNA and incorporating a T7 promoter onto the 3 end of the transcript. Amplified RNA (aRNA) can then be converted to double stranded cDNA using random hexamers and directly sequenced by pyrosequencing 5. A first use of this method at Station ALOHA demonstrated its utility for characterizing microbial community gene expression 6

    Microbially-mediated transformations of estuarine dissolved organic matter

    Get PDF
    Microbially-mediated transformations of dissolved organic matter (DOM) in a marsh-dominated estuarine system were investigated at the molecular level using ultrahigh resolution mass spectrometry. In addition to observing spatial and temporal variability in DOM sources in the estuary, multiple incubations with endogenous microorganisms identified the influence of DOM composition on biodegradation. A clear microbial preference for degradation of compounds associated with marine DOM relative to those of terrestrial origin was observed, resulting in an overall shift of the remaining DOM toward a stronger terrigenous signature. During short, 1-day long incubations of samples rich in marine DOM, the molecular formulae that were enriched had slightly smaller mass (20-30 Da) and number of carbon atoms compared to the molecular formulae that were depleted. Over longer time scales (70 days), the mean differences in molecular mass between formulae that were depleted and enriched were substantially larger (~270 Da). The differences in elemental composition over daily time scales were consistent with transformations in functional groups; over longer time scales, the differences in elemental composition may be related to progressive transformations of functional groups of intermediate products and/or other reactions. Our results infused new data toward the understanding of DOM processing by bacterioplankton in estuarine systems

    Analysis of a spatial Lotka-Volterra model with a finite range predator-prey interaction

    Full text link
    We perform an analysis of a recent spatial version of the classical Lotka-Volterra model, where a finite scale controls individuals' interaction. We study the behavior of the predator-prey dynamics in physical spaces higher than one, showing how spatial patterns can emerge for some values of the interaction range and of the diffusion parameter.Comment: 7 pages, 7 figure
    • …
    corecore