141 research outputs found
Open String Thermodynamics and D-Branes
We study the thermodynamics of open superstrings in the presence of
-dimensional D-branes. We get some finite temperature dualities relating the
one-loop canonical free energy of open strings to the self-energy of D-branes
at dual temperature. For the open bosonic string the inverse dual temperature
is, as expected, the dual length under T-duality, .
On the contrary, for the , type-I superstring the dual temperature is
given by -duality, . We also study the
emergence of the Hagedorn singularity in the dual description as triggered by
the coupling of the D-brane to unphysical tachyons as well as the high
temperature limit.Comment: 16 pages, harvmac (b), epsf, 2 figures included. Minor changes;
discussion in section 4 has been expanded and two footnotes and a reference
adde
The anomaly line bundle of the self-dual field theory
In this work, we determine explicitly the anomaly line bundle of the abelian
self-dual field theory over the space of metrics modulo diffeomorphisms,
including its torsion part. Inspired by the work of Belov and Moore, we propose
a non-covariant action principle for a pair of Euclidean self-dual fields on a
generic oriented Riemannian manifold. The corresponding path integral allows to
study the global properties of the partition function over the space of metrics
modulo diffeomorphisms. We show that the anomaly bundle for a pair of self-dual
fields differs from the determinant bundle of the Dirac operator coupled to
chiral spinors by a flat bundle that is not trivial if the underlying manifold
has middle-degree cohomology, and whose holonomies are determined explicitly.
We briefly sketch the relevance of this result for the computation of the
global gravitational anomaly of the self-dual field theory, that will appear in
another paper.Comment: 41 pages. v2: A few typos corrected. Version accepted for publication
in CM
A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations
Decades of rodent research have established the role of hippocampal sharp wave ripples (SPW-Rs) in consolidating and guiding experience. More recently, intracranial recordings in humans have suggested their role in episodic and semantic memory. Yet, common standards for recording, detection, and reporting do not exist. Here, we outline the methodological challenges involved in detecting ripple events and offer practical recommendations to improve separation from other high-frequency oscillations. We argue that shared experimental, detection, and reporting standards will provide a solid foundation for future translational discovery.This work was funded by K23NS104252 (A.A.L.) R01 MH117777 (E.B., J.W.R.) Whitehall Foundation (KH) 5F31NS120783-02 (Z.L.) 1U19NS104590 (A.L.) R01NS106611-02 (J.S., M.K.) MTEC-20-06-MOM013 (J.S., M.K.) 1U19NS107609-01 (I.S., J.L.) 1U19NS104590 (A.L., J.S.F., I.S.) 1U19NS107609 (E.A.B., J.W.R., J.J.L., I.S.) La Caixa LCF/PR/HR21/52410030 (A.N.O., L.dl.P) European Research Council Consolidator Grant 101001121 (B.P.S.) U.S.-Israel BSF grant 2017015 (RM)U01-NS113198 (J.J.) NSF CAREER IOS-1844935 (M.vdM.) 1R01NS121764-01 (B.L.M.) R01 MH122391 (G.B.) 30MH126483 (J.A.G.) Fondation pour la Recherche Médicale EQU202103012768 (M.Z.) 1R16-NS131108-01 (L.L.)
Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV
We present the first measurement of directed flow () at RHIC. is
found to be consistent with zero at pseudorapidities from -1.2 to 1.2,
then rises to the level of a couple of percent over the range . The latter observation is similar to data from NA49 if the SPS rapidities
are shifted by the difference in beam rapidity between RHIC and SPS.
Back-to-back jets emitted out-of-plane are found to be suppressed more if
compared to those emitted in-plane, which is consistent with {\it jet
quenching}. Using the scalar product method, we systematically compared
azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow
from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure
Azimuthal anisotropy: the higher harmonics
We report the first observations of the fourth harmonic (v_4) in the
azimuthal distribution of particles at RHIC. The measurement was done taking
advantage of the large elliptic flow generated at RHIC. The integrated v_4 is
about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8)
harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding
Plasma Wakefield Acceleration with a Modulated Proton Bunch
The plasma wakefield amplitudes which could be achieved via the modulation of
a long proton bunch are investigated. We find that in the limit of long bunches
compared to the plasma wavelength, the strength of the accelerating fields is
directly proportional to the number of particles in the drive bunch and
inversely proportional to the square of the transverse bunch size. The scaling
laws were tested and verified in detailed simulations using parameters of
existing proton accelerators, and large electric fields were achieved, reaching
1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found
in this case.Comment: 9 pages, 7 figure
The energy dependence of angular correlations inferred from mean- fluctuation scale dependence in heavy ion collisions at the SPS and RHIC
We present the first study of the energy dependence of angular
correlations inferred from event-wise mean transverse momentum
fluctuations in heavy ion collisions. We compare our large-acceptance
measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to
SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure
suggests that the principal source of $p_t$ correlations and fluctuations is
minijets (minimum-bias parton fragments). We observe a dramatic increase in
correlations and fluctuations from SPS to RHIC energies, increasing linearly
with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related
fluctuations near 10 GeV.Comment: 10 pages, 4 figure
All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators
We review our recent work on tunable, ultrahigh quality factor
whispering-gallery-mode bottle microresonators and highlight their applications
in nonlinear optics and in quantum optics experiments. Our resonators combine
ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume,
and near-lossless fiber coupling, with a simple and customizable mode structure
enabling full tunability. We study, theoretically and experimentally, nonlinear
all-optical switching via the Kerr effect when the resonator is operated in an
add-drop configuration. This allows us to optically route a single-wavelength
cw optical signal between two fiber ports with high efficiency. Finally, we
report on progress towards strong coupling of single rubidium atoms to an
ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B.
Changes according to referee suggestions: minor corrections to some figures
and captions, clarification of some points in the text, added references,
added new paragraph with results on atom-resonator interactio
Partonic flow and -meson production in Au+Au collisions at = 200 GeV
We present first measurements of the -meson elliptic flow
() and high statistics distributions for different
centralities from = 200 GeV Au+Au collisions at RHIC. In
minimum bias collisions the of the meson is consistent with the
trend observed for mesons. The ratio of the yields of the to those of
the as a function of transverse momentum is consistent with a model
based on the recombination of thermal quarks up to GeV/,
but disagrees at higher momenta. The nuclear modification factor () of
follows the trend observed in the mesons rather than in
baryons, supporting baryon-meson scaling. Since -mesons are
made via coalescence of seemingly thermalized quarks in central Au+Au
collisions, the observations imply hot and dense matter with partonic
collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR
Strange Resonance Production in p+p and Au+Au Collisions at RHIC Energies
Resonance yields and spectra from elementary p+p and Au+Au collisions at
200 GeV from the STAR experiment at RHIC are presented
and discussed in terms of chemical and thermal freeze-out conditions. Thermal
models do not adequately describe the yields of the resonance production in
central Au+Au collisions. The approach to include elastic hadronic interactions
between chemical freeze-out and thermal freeze-out suggests a time of 5 fm/c.Comment: 4 pages, 7 figures, proceedings of the Quark Matter 2004, in Oakland,
California, to be published in Journal of Physics G: Nuclear and Particle
Physic
- …