587 research outputs found

    Supersymmetric Large Extra Dimensions and the Cosmological Constant Problem

    Full text link
    This article briefly summarizes and reviews the motivations for - and the present status of - the proposal that the small size of the observed Dark Energy density can be understood in terms of the dynamical relaxation of two large extra dimensions within a supersymmetric higher-dimensional theory.Comment: Talk presented to Theory Canada I, Vancouver, June 2005. References added in V

    Electrophysical methods of separation of metal cations in the moving salts solution

    Get PDF
    The results of experiments on the excitation of the phenomenon of selective drift of solvated ions under the influence of an external "asymmetric" electric field to the circulating solution of calcium chloride and magnesium salts in a polar liquid dielectric - water are shown. The purpose of the experiments was to determine the influence of the field frequency and amplitude of the field strength on the excitation phenomenon, and the study of the operating characteristics of the testing apparatus - a dividing cell. The dependences of the separation efficiency of solvated cations from the frequency of the external field and the excitation threshold of the phenomenon from the field strength in the separation cell are defined

    Moduli stabilization with positive vacuum energy

    Get PDF
    We study the effect of anomalous U(1) gauge groups in string theory compactification with fluxes. We find that, in a gauge invariant formulation, consistent AdS vacua appear breaking spontaneously supergravity. Non vanishing D-terms from the anomalous symmetry act as an uplifting potential and could allow for de Sitter vacua. However, we show that in this case the gravitino is generically (but not always) much heavier than the electroweak scale. We show that alternative uplifting scheme based on corrections to the Kahler potential can be compatible with a gravitino mass in the TeV range.Comment: 20 pages, 1 figur

    A Class of Effective Field Theory Models of Cosmic Acceleration

    Full text link
    We explore a class of effective field theory models of cosmic acceleration involving a metric and a single scalar field. These models can be obtained by starting with a set of ultralight pseudo-Nambu-Goldstone bosons whose couplings to matter satisfy the weak equivalence principle, assuming that one boson is lighter than all the others, and integrating out the heavier fields. The result is a quintessence model with matter coupling, together with a series of correction terms in the action in a covariant derivative expansion, with specific scalings for the coefficients. After eliminating higher derivative terms and exploiting the field redefinition freedom, we show that the resulting theory contains nine independent free functions of the scalar field when truncated at four derivatives. This is in contrast to the four free functions found in similar theories of single-field inflation, where matter is not present. We discuss several different representations of the theory that can be obtained using the field redefinition freedom. For perturbations to the quintessence field today on subhorizon lengthscales larger than the Compton wavelength of the heavy fields, the theory is weakly coupled and natural in the sense of t'Hooft. The theory admits a regime where the perturbations become modestly nonlinear, but very strong nonlinearities lie outside its domain of validity.Comment: 43 pages, 2 figures; Version 3 publication versio

    Game Theoretical Interactions of Moving Agents

    Full text link
    Game theory has been one of the most successful quantitative concepts to describe social interactions, their strategical aspects, and outcomes. Among the payoff matrix quantifying the result of a social interaction, the interaction conditions have been varied, such as the number of repeated interactions, the number of interaction partners, the possibility to punish defective behavior etc. While an extension to spatial interactions has been considered early on such as in the "game of life", recent studies have focussed on effects of the structure of social interaction networks. However, the possibility of individuals to move and, thereby, evade areas with a high level of defection, and to seek areas with a high level of cooperation, has not been fully explored so far. This contribution presents a model combining game theoretical interactions with success-driven motion in space, and studies the consequences that this may have for the degree of cooperation and the spatio-temporal dynamics in the population. It is demonstrated that the combination of game theoretical interactions with motion gives rise to many self-organized behavioral patterns on an aggregate level, which can explain a variety of empirically observed social behaviors

    Bosonization and Duality in Arbitrary Dimensions: New Results

    Get PDF
    A generic massive Thirring Model in three space-time dimensions exhibits a correspondence with a topologically massive bosonized gauge action associated to a self-duality constraint, and we write down a general expression for this relationship. We also generalize this structure to dd dimensions, by adopting the so-called doublet approach, recently introduced. In particular, a non- conventional formulation of the bosonization technique in higher dimensions (in the spirit of d=3d=3), is proposed and, as an application, we show how fermionic (Thirring-like) representations for bosonic topologically massive models in four dimensions may be built up.Comment: Revised version, to appear in Phys. Rev.

    Moduli stabilization with Fayet-Iliopoulos uplift

    Get PDF
    In the recent years, phenomenological models of moduli stabilization were proposed, where the dynamics of the stabilization is essentially supersymmetric, whereas an O'Rafearthaigh supersymmetry breaking sector is responsible for the "uplift" of the cosmological constant to zero. We investigate the case where the uplift is provided by a Fayet-Iliopoulos sector. We find that in this case the modulus contribution to supersymmetry breaking is larger than in the previous models. A first consequence of this class of constructions is for gauginos, which are heavier compared to previous models. In some of our explicit examples, due to a non-standard gauge-mediation type negative contribution to scalars masses, the whole superpartner spectrum can be efficiently compressed at low-energy. This provides an original phenomenology testable at the LHC, in particular sleptons are generically heavier than the squarks.Comment: 29 pages, 2 figure
    corecore