53,049 research outputs found
Comment on ``Evidence for Anisotropic State of Two-Dimensional Electrons in High Landau Levels''
In a recent letter M. Lilly et al [PRL 82, 394 (1999)] have shown that a
highly anisotropic state can arise in certain two dimensional electron systems.
In the large square samples studied, resistances measured in the two
perpendicular directions are found to have a ratio that may be 60 or larger at
low temperature and at certain magnetic fields. In Hall bar measurements, the
anisotropy ratio is found to be much smaller (roughly 5). In this comment we
resolve this discrepancy by noting that the anisotropy of the underlying sheet
resistivities is correctly represented by Hall bar resistance measurements but
shows up exponentially enhanced in resistance measurements on square samples
due to simple geometric effects. We note, however, that the origin of this
underlying resistivity anisotropy remains unknown, and is not addressed here.Comment: 1 page, minor calculational error repaire
Robust Hâ feedback control for uncertain stochastic delayed genetic regulatory networks with additive and multiplicative noise
The official published version can found at the link below.Noises are ubiquitous in genetic regulatory networks (GRNs). Gene regulation is inherently a stochastic process because of intrinsic and extrinsic noises that cause kinetic parameter variations and basal rate disturbance. Time delays are usually inevitable due to different biochemical reactions in such GRNs. In this paper, a delayed stochastic model with additive and multiplicative noises is utilized to describe stochastic GRNs. A feedback gene controller design scheme is proposed to guarantee that the GRN is mean-square asymptotically stable with noise attenuation, where the structure of the controllers can be specified according to engineering requirements. By applying control theory and mathematical tools, the analytical solution to the control design problem is given, which helps to provide some insight into synthetic biology and systems biology. The control scheme is employed in a three-gene network to illustrate the applicability and usefulness of the design.This work was funded by Royal Society of the U.K.; Foundation for the Author of National Excellent Doctoral Dissertation of China. Grant Number: 2007E4; Heilongjiang Outstanding Youth Science Fund of China. Grant Number: JC200809; Fok Ying Tung Education Foundation. Grant Number: 111064; International Science and Technology Cooperation Project of China. Grant Number: 2009DFA32050; University of Science and Technology of China Graduate Innovative Foundation
LaFeAsOF: A low carrier density superconductor near itinerant magnetism
Density functional studies of 26K superconducting LaFeAs(O,F) are reported.
We find a low carrier density, high density of states, and modest
phonon frequencies relative to . The high leads to proximity to
itinerant magnetism, with competing ferromagnetic and antiferromagnetic
fluctuations and the balance between these controlled by doping level. Thus
LaFeAs(O,F) is in a unique class of high superconductors: high
ionic metals near magnetism.Comment: Shortened published form. Typos correcte
On the Approximability and Hardness of the Minimum Connected Dominating Set with Routing Cost Constraint
In the problem of minimum connected dominating set with routing cost
constraint, we are given a graph , and the goal is to find the
smallest connected dominating set of such that, for any two
non-adjacent vertices and in , the number of internal nodes on the
shortest path between and in the subgraph of induced by is at most times that in . For general graphs, the only
known previous approximability result is an -approximation algorithm
() for by Ding et al. For any constant , we
give an -approximation
algorithm. When , we give an -approximation
algorithm. Finally, we prove that, when , unless , for any constant , the problem admits no
polynomial-time -approximation algorithm, improving
upon the bound by Du et al. (albeit under a stronger hardness
assumption)
Comment on "Self-Purification in Semiconductor Nanocrystals"
In a recent Letter [PRL 96, 226802 (2006)], Dalpian and Chelikowsky claimed
that formation energies of Mn impurities in CdSe nanocrystals increase as the
size of the nanocrystal decreases, and argued that this size dependence leads
to "self-purification" of small nanocrystals. They presented
density-functional-theory (DFT) calculations showing a strong size dependence
for Mn impurity formation energies, and proposed a general explanation. In this
Comment we show that several different DFT codes, pseudopotentials, and
exchange-correlation functionals give a markedly different result: We find no
such size dependence. More generally, we argue that formation energies are not
relevant to substitutional doping in most colloidally grown nanocrystals.Comment: 1 page, 1 figur
In silico approach to identification of a novel gene responsive to submergence stress in rice
Submergence is one of the major constraints to rice production. Bioinformatics approach has been widely used to identify candidate genes on many biological aspects. In the present study, a novel gene involved in submergence stress in rice, Os07g47670 was identified by in silico approach. The amino acid sequence of Os07g47670 is highly homologous to hypoxia-responsive family proteins. No disordered regions are found in the Os07g47670 protein. In the Os07g47670 gene promoter, there are two ARE cis-regulatory elements, indicating that Os07g47670 is associated with submergence responsiveness. The Os07g47670 transcript levels are higher in roots of one or two-week old plants than in other tissues. Without the Sub1A gene, the expression level of Os07g47670 in M202 is low under submergence, ACC treatment, and normal condition. However, in the Sub1A genetic background, the Os07g47670 transcript level is strongly induced during submergence, and peaked at day 1 during submergence. The mRNA level of Os07g47670 in M202(Sub1A) was also significantly increased by ACC treatment. High expression level of Os07g47670 is correlated with the existence of the Sub1A gene. Os07g47670 shares similar expression patterns with Sub1A, ADH1, SLR1, and SLRL1 and are co-induced under submergence. Thus, we have documented Os07g47670 as a novel gene associated with submergence stress response. The identification of Os07g47670 will facilitate the understanding of the molecular mechanism of submergence tolerance in rice.Key words: Rice (Oryza sativa L.), in silico approach, submergence, waterlogging
CP violation for neutral charmed meson decays to CP eigenstates
CP asymmetries for neutral charmed meson decays to CP eigenstates are
carefully studied. The formulas and numerical results are presented. The impact
on experiments is briefly discussed.Comment: 7 pages, 1 figure, 1 table, Revte
- âŠ