138,856 research outputs found
Short and slim nacelle design for ultra-high BPR engines
An optimisation method consisting of the non-dominated sorting genetic algorithm (NSGA-II) and computational fluid dynamics of aero-engine nacelles is outlined. The method is applied to three nacelle lengths to determine the relative performance of different ultra-high bypass ratio engine nacelles. The optimal designs at each nacelle length are optimised for three objective functions: cruise drag, drag rise Mach number and change in spillage drag from mid to end of cruise. The Pareto sets generated from these optimisation computations demonstrate that the design space for short nacelles is much narrower in terms of these performace metrics and there are significant penalties in the off design conditions compared to the longer nacelle. Specifically the minimum spillage drag coefficient attainable, for a nacelle with a drag rise Mach number above 0.87, was 0.0040 for the shortest nacelle compared to 0.0005 for a nacelle which was 23% longer
The Stellar Dynamics of Omega Centauri
The stellar dynamics of Omega Centauri are inferred from the radial
velocities of 469 stars measured with CORAVEL (Mayor et al. 1997). Rather than
fit the data to a family of models, we generate estimates of all dynamical
functions nonparametrically, by direct operation on the data. The cluster is
assumed to be oblate and edge-on but mass is not assumed to follow light. The
mean motions are consistent with axisymmetry but the rotation is not
cylindrical. The peak rotational velocity is 7.9 km/s at 11 pc from the center.
The apparent rotation of Omega Centauri is attributable in part to its proper
motion. We reconstruct the stellar velocity ellipsoid as a function of
position, assuming isotropy in the meridional plane. We find no significant
evidence for a difference between the velocity dispersions parallel and
perpendicular to the meridional plane. The mass distribution inferred from the
kinematics is slightly more extended than, though not strongly inconsistent
with, the luminosity distribution. We also derive the two-integral distribution
function f(E,Lz) implied by the velocity data.Comment: 25 Latex pages, 12 Postscript figures, uses aastex, epsf.sty.
Submitted to The Astronomical Journal, December 199
Target shape dependence in a simple model of receptor-mediated endocytosis and phagocytosis
Phagocytosis and receptor-mediated endocytosis are vitally important particle
uptake mechanisms in many cell types, ranging from single-cell organisms to
immune cells. In both processes, engulfment by the cell depends critically on
both particle shape and orientation. However, most previous theoretical work
has focused only on spherical particles and hence disregards the wide-ranging
particle shapes occurring in nature, such as those of bacteria. Here, by
implementing a simple model in one and two dimensions, we compare and contrast
receptor-mediated endocytosis and phagocytosis for a range of biologically
relevant shapes, including spheres, ellipsoids, capped cylinders, and
hourglasses. We find a whole range of different engulfment behaviors with some
ellipsoids engulfing faster than spheres, and that phagocytosis is able to
engulf a greater range of target shapes than other types of endocytosis.
Further, the 2D model can explain why some nonspherical particles engulf
fastest (not at all) when presented to the membrane tip-first (lying flat). Our
work reveals how some bacteria may avoid being internalized simply because of
their shape, and suggests shapes for optimal drug delivery.Comment: 18 pages, 5 figure
- …