36 research outputs found

    p.Ala541Thr variant of MEN1 gene: A non deleterious polymorphism or a pathogenic mutation?

    Get PDF
    Context Multiple Endocrine Neoplasia Type 1 (MEN1) is an autosomal dominant inherited syndrome, related to mutations in the MEN1 gene. Controversial data suggest that the nonsynonymous p.Ala541Thr variant, usually considered as a non-pathogenic polymorphism, may be associated with an increased risk of MEN1-related lesions in carriers. Objective The aim of this study was to evaluate the pathogenic influence of the p.Ala541Thr variant on clinical and functional outcomes. Patients and methods We analysed a series of 55 index patients carrying the p.Ala541Thr variant. Their clinical profile was compared to that of 117 MEN1 patients. The biological impact of the p.Ala541Thr variant on cell growth was additionally investigated on menin-deficient Leydig cell tumour (LCT)10 cells generated from Men1+/Men1− heterozygous knock-out mice, and compared with wild type (WT). Results The mean age at first appearance of endocrine lesions was similar in both p.Ala541Thr carriers and MEN1 patients, but no p.Ala541Thr patient had more than one cardinal MEN1 lesion at initial diagnosis. A second MEN1 lesion was diagnosed in 13% of MEN1 patients and in 7% of p.Ala541Thr carriers in the year following preliminary diagnosis. Functional studies on LCT10 cells showed that overexpression of the p.Ala541Thr variant did not inhibit cell growth, which is in direct contrast to results obtained from investigation of WT menin protein. Conclusion Taken together, these data raise the question of a potential pathogenicity of the p.Ala541Thr missense variant of menin that commonly occurs within the general population. Additional studies are required to investigate whether it may be involved in a low-penetrance MEN1 phenotype

    Characterization by liquid chromatography combined with mass spectrometry of monoclonal anti-IGF-1 receptor antibodies produced in CHO and NS0 cells

    Get PDF
    7H2HM is a new humanized recombinant monoclonal antibody (MAb) directed against insulin-like growth factor-1 receptor and produced in CHO cells. Homogeneity of intact antibody, reduced light and heavy chains, Fab and Fc fragments were investigated by analytical methods based on mass (SDS-PAGE, SEC), charge (IEF, C-IEX) and hydrophobicity differences (RP-HPLC, HIC) and compared side-by-side with A2CHM, produced in NS0 cells. Primary structures and disulfide bridge pairing were analyzed by microsequencing (Edman degradation), mass spectrometry (MALDI–TOF, ES–TOF) and peptide mapping after enzymatic digestion (Trypsin, endoprotease Lys-C, papain). The light chains demonstrated the expected sequences. The heavy chains yielded post-translational modifications previously reported for other recombinant humanized or human IgG1 such as N-terminal pyroglutamic acid, C-terminal lysine clipping and N-glycosylation for asparagine 297. More surprisingly, two-thirds of the 7H2HM heavy chains were shown to contain an additional 24-amino-acid sequence, corresponding to the translation of an intron located between the variable and the constant domains. Taken together these data suggest that 7H2HM is a mixture of three families of antibodies corresponding (i) to the expected structure (17%; 149 297 Da; 1330 amino acids), (ii) a variant with a translated intron in one heavy chains (33%; 152 878 Da; 1354 amino acids) and (iii) a variant with translated introns in two heavy chains (50%; 154 459 Da; 1378 amino acids), respectively. RP-HPLC is not a commonly used chromatographic method to assess purity of monoclonal antibodies but unlike to SEC and SDS-PAGE, was able to show and to quantify the family of structures present in 7H2HM, which were also identified by peptide mapping, mass spectrometry and microsequencing

    Early Events Associated with Infection of Epstein-Barr Virus Infection of Primary B-Cells

    Get PDF
    Epstein Barr virus (EBV) is closely associated with the development of a vast number of human cancers. To develop a system for monitoring early cellular and viral events associated with EBV infection a self-recombining BAC containing 172-kb of the Epstein Barr virus genome BAC-EBV designated as MD1 BAC (Chen et al., 2005, J.Virology) was used to introduce an expression cassette of green fluorescent protein (GFP) by homologous recombination, and the resultant BAC clone, BAC-GFP-EBV was transfected into the HEK 293T epithelial cell line. The resulting recombinant GFP EBV was induced to produce progeny virus by chemical inducer from the stable HEK 293T BAC GFP EBV cell line and the virus was used to immortalize human primary B-cell as monitored by green fluorescence and outgrowth of the primary B cells. The infection, B-cell activation and cell proliferation due to GFP EBV was monitored by the expression of the B-cell surface antigens CD5, CD10, CD19, CD23, CD39, CD40 , CD44 and the intercellular proliferation marker Ki-67 using Flow cytometry. The results show a dramatic increase in Ki-67 which continues to increase by 6–7 days post-infection. Likewise, CD40 signals showed a gradual increase, whereas CD23 signals were increased by 6–12 hours, maximally by 3 days and then decreased. Monitoring the viral gene expression pattern showed an early burst of lytic gene expression. This up-regulation of lytic gene expression prior to latent genes during early infection strongly suggests that EBV infects primary B-cell with an initial burst of lytic gene expression and the resulting progeny virus is competent for infecting new primary B-cells. This process may be critical for establishment of latency prior to cellular transformation. The newly infected primary B-cells can be further analyzed for investigating B cell activation due to EBV infection

    Opposite effects of sodium butyrate on CCKmRNA and CCK peptide levels in RIN cells

    No full text
    International audienc

    Opposite effects of sodium butyrate on CCKmRNA and CCK peptide levels in RIN cells

    No full text
    International audienc
    corecore