329 research outputs found
Anomalous behavior of the energy gap in the one-dimensional quantum XY model
We re-examine the well-studied one dimensional spin-1/2 model to reveal
its nontrivial energy spectrum, in particular the energy gap between the ground
state and the first excited state. In the case of the isotropic model --
the model -- the gap behaves very irregularly as a function of the system
size at a second order transition point. This is in stark contrast to the usual
power-law decay of the gap and is reminiscent of the similar behavior at the
first order phase transition in the infinite-range quantum model. The gap
also shows nontrivial oscillatory behavior for the phase transitions in the
anisotropic model in the incommensurate phase. We observe a close relation
between this anomalous behavior of the gap and the correlation functions. These
results, those for the isotropic case in particular, are important from the
viewpoint of quantum annealing where the efficiency of computation is strongly
affected by the size dependence of the energy gap.Comment: 25 pages, 8 figures. arXiv admin note: substantial text overlap with
arXiv:1501.0292
Why can they fly and swim? Dynamic similarity between flight and swimming in Rhinoceros auklets
第3回極域科学シンポジウム/第34回極域生物シンポジウム 11月26日(月) 国立極地研究所 3階ラウン
Activity seascapes highlight central place foraging strategies in marine predators that never stop swimming
Background: Central place foragers (CPF) rest within a central place, and theory predicts that distance of patches from this central place sets the outer limits of the foraging arena. Many marine ectothermic predators behave like CPF animals, but never stop swimming, suggesting that predators will incur ‘travelling’ costs while resting. Currently, it is unknown how these CPF predators behave or how modulation of behavior contributes to daily energy budgets. We combine acoustic telemetry, multi-sensor loggers, and hidden Markov models (HMMs) to generate ‘activity seascapes’, which combine space use with patterns of activity, for reef sharks (blacktip reef and grey reef sharks) at an unfished Pacific atoll. Results: Sharks of both species occupied a central place during the day within deeper, cooler water where they were less active, and became more active over a larger area at night in shallower water. However, video cameras on two grey reef sharks revealed foraging attempts/success occurring throughout the day, and that multiple sharks were refuging in common areas. A simple bioenergetics model for grey reef sharks predicted that diel changes in energy expenditure are primarily driven by changes in swim speed and not body temperature. Conclusions: We provide a new method for simultaneously visualizing diel space use and behavior in marine predators, which does not require the simultaneous measure of both from each animal. We show that blacktip and grey reef sharks behave as CPFs, with diel changes in activity, horizontal and vertical space use. However, aspects of their foraging behavior may differ from other predictions of traditional CPF models. In particular, for species that never stop swimming, patch foraging times may be unrelated to patch travel distance
Search for Two Nucleon States by the ^<12>C (γ, pn) ^<10>B Reaction(I. Nuclear Physics)
We performed the ^C(γ, pn) experiment using tagged photons in an energy range from 30 to 120 MeV. Protons and neutrons were detected by a range telescope and NE213 liquid scintillators, respectively. Missing energy spectra of the ^C(γ, pn) reaction were deduced to search for the two nucleon excited states. In this report, we show the experimental setup for the ^C(γ, pn) reaction using the tagged photon beams. The preliminary results are shown and discussed. The data analysis is in progress
Forecasting ground-based sensitivity to the Rayleigh scattering of the CMB in the presence of astrophysical foregrounds
The Rayleigh scattering of cosmic microwave background (CMB) photons off the
neutral hydrogen produced during recombination effectively creates an
additional scattering surface after recombination that encodes new cosmological
information, including the expansion and ionization history of the universe. A
first detection of Rayleigh scattering is a tantalizing target for
next-generation CMB experiments. We have developed a Rayleigh scattering
forecasting pipeline that includes instrumental effects, atmospheric noise, and
astrophysical foregrounds (e.g., Galactic dust, cosmic infrared background, or
CIB, and the thermal Sunyaev-Zel'dovich effect). We forecast the Rayleigh
scattering detection significance for several upcoming ground-based
experiments, including SPT-3G+, Simons Observatory, CCAT-prime, and CMB-S4, and
examine the limitations from atmospheric and astrophysical foregrounds as well
as potential mitigation strategies. When combined with Planck data, we estimate
that the ground-based experiments will detect Rayleigh scattering with a
significance between 1.6 and 3.7, primarily limited by atmospheric noise and
the CIB.Comment: 19 pages, 7 figures (v2 additional author added
Epigenetic Regulation of KPC1 Ubiquitin Ligase Affects the NF-κB Pathway in Melanoma.
Purpose: Abnormal activation of the NF-κB pathway induces a more aggressive phenotype of cutaneous melanoma. Understanding the mechanisms involved in melanoma NF-κB activation may identify novel targets for this pathway. KPC1, an E3 ubiquitin ligase, is a regulator of the NF-κB pathway. The objective of this study was to investigate the mechanisms regulating KPC1 expression and its clinical impact in melanoma.Experimental Design: The clinical impact of KPC1 expression and its epigenetic regulation were assessed in large cohorts of clinically well-annotated melanoma tissues (tissue microarrays; n = 137, JWCI cohort; n = 40) and The Cancer Genome Atlas database (TCGA cohort, n = 370). Using melanoma cell lines, we investigated the functional interactions between KPC1 and NF-κB, and the epigenetic regulations of KPC1, including DNA methylation and miRNA expression.Results: We verified that KPC1 suppresses melanoma proliferation by processing NF-κB1 p105 into p50, thereby modulating NF-κB target gene expression. Concordantly, KPC1 expression was downregulated in American Joint Committee on Cancer stage IV melanoma compared with early stages (stage I/II P = 0.013, stage III P = 0.004), and low KPC1 expression was significantly associated with poor overall survival in stage IV melanoma (n = 137; HR 1.810; P = 0.006). Furthermore, our data showed that high miR-155-5p expression, which is controlled by DNA methylation at its promoter region (TCGA; Pearson\u27s r -0.455; P \u3c 0.001), is significantly associated with KPC1 downregulation (JWCI; P = 0.028, TCGA; P = 0.003).Conclusions: This study revealed novel epigenetic regulation of KPC1 associated with NF-κB pathway activation, promoting metastatic melanoma progression. These findings suggest the potential utility of KPC1 and its epigenetic regulation as theranostic targets. Clin Cancer Res; 23(16); 4831-42. ©2017 AACR
- …