111 research outputs found

    AC Conductance in Dense Array of the Ge0.7_{0.7}Si0.3_{0.3} Quantum Dots in Si

    Full text link
    Complex AC-conductance, σAC\sigma^{AC}, in the systems with dense Ge0.7_{0.7}Si0.3_{0.3} quantum dot (QD) arrays in Si has been determined from simultaneous measurements of attenuation, ΔΓ=Γ(H)−Γ(0)\Delta\Gamma=\Gamma(H)-\Gamma(0), and velocity, ΔV/V=(V(H)−V(0))/V(0)\Delta V /V=(V(H)-V(0)) / V(0), of surface acoustic waves (SAW) with frequencies ff = 30-300 MHz as functions of transverse magnetic field H≀H \leq 18 T in the temperature range TT = 1-20 K. It has been shown that in the sample with dopant (B) concentration 8.2×1011 \times 10^{11} cm−2^{-2} at temperatures T≀T \leq4 K the AC conductivity is dominated by hopping between states localized in different QDs. The observed power-law temperature dependence, σ1(H=0)∝T2.4\sigma_1(H=0)\propto T^{2.4}, and weak frequency dependence, σ1(H=0)∝ω0\sigma_1(H=0)\propto \omega^0, of the AC conductivity are consistent with predictions of the two-site model for AC hopping conductivity for the case of ωτ0≫\omega \tau_0 \gg 1, where ω=2πf\omega=2\pi f is the SAW angular frequency and τ0\tau_0 is the typical population relaxation time. At T>T > 7 K the AC conductivity is due to thermal activation of the carriers (holes) to the mobility edge. In intermediate temperature region 4<T< < T< 7 K, where AC conductivity is due to a combination of hops between QDs and diffusion on the mobility edge, one succeeded to separate both contributions. Temperature dependence of hopping contribution to the conductivity above T∗∌T^*\sim 4.5 K saturates, evidencing crossover to the regime where ωτ0<\omega \tau_0 < 1. From crossover condition, ωτ0(T∗)\omega \tau_0(T^*) = 1, the typical value, τ0\tau_0, of the relaxation time has been determined.Comment: revtex, 3 pages, 6 figure

    Density of States and Conductivity of Granular Metal or Array of Quantum Dots

    Full text link
    The conductivity of a granular metal or an array of quantum dots usually has the temperature dependence associated with variable range hopping within the soft Coulomb gap of density of states. This is difficult to explain because neutral dots have a hard charging gap at the Fermi level. We show that uncontrolled or intentional doping of the insulator around dots by donors leads to random charging of dots and finite bare density of states at the Fermi level. Then Coulomb interactions between electrons of distant dots results in the a soft Coulomb gap. We show that in a sparse array of dots the bare density of states oscillates as a function of concentration of donors and causes periodic changes in the temperature dependence of conductivity. In a dense array of dots the bare density of states is totally smeared if there are several donors per dot in the insulator.Comment: 13 pages, 15 figures. Some misprints are fixed. Some figures are dropped. Some small changes are given to improve the organizatio

    Absorption of Terahertz Radiation in Ge/Si(001) Heterostructures with Quantum Dots

    Full text link
    The terahertz spectra of the dynamic conductivity and radiation absorption coefficient in germanium-silicon heterostructures with arrays of Ge hut clusters (quantum dots) have been measured for the first time in the frequency range of 0.3-1.2 THz at room temperature. It has been found that the effective dynamic conductivity and effective radiation absorption coefficient in the heterostructure due to the presence of germanium quantum dots in it are much larger than the respective quantities of both the bulk Ge single crystal and Ge/Si(001) without arrays of quantum dots. The possible microscopic mechanisms of the detected increase in the absorption in arrays of quantum dots have been discussed.Comment: 9 pages, 4 figures; typos correcte

    Disinfection of Surfaces Contaminated with SARS-CoV-2 Coronavirus by UV Radiation of Low-Pressure Mercury-Vapour Lamp

    Get PDF
    The aim of the work was to determine the effective ultraviolet (UV) doses required for the disinfection of surfaces contaminated with the SARS-CoV-2 coronavirus using a low-pressure mercury lamp. Materials and methods. To carry out prompt disinfection of surfaces, a specially designed source of UV radiation with a power of 7.5 W at a wavelength of 254 nm in the form of a portable flashlight was employed, which has a high efficiency of UV radiation output and the possibility of long-term autonomous operation from a compact battery. In the studies, a suspension culture of the SARS-CoV-2 coronavirus with biological activity of 5.3∙106 PFU/ml was used. The objects of testing were plastic Petri dishes (disposable) and office paper (grade C, density 80 g/m2 ). Results and discussion. Doses of UV radiation that provide disinfection of surfaces contaminated with the COVID-19 pathogen with an efficiency of 99.0 % (paper) to 99.95 % (plastic) have been determined. The results obtained make it possible to recommend a portable UV irradiator for use in the practice of preventive measures to combat the spread of the disease caused by the SARS-CoV-2 coronavirus

    Developing 1D nanostructure arrays for future nanophotonics

    Get PDF
    There is intense and growing interest in one-dimensional (1-D) nanostructures from the perspective of their synthesis and unique properties, especially with respect to their excellent optical response and an ability to form heterostructures. This review discusses alternative approaches to preparation and organization of such structures, and their potential properties. In particular, molecular-scale printing is highlighted as a method for creating organized pre-cursor structure for locating nanowires, as well as vapor–liquid–solid (VLS) templated growth using nano-channel alumina (NCA), and deposition of 1-D structures with glancing angle deposition (GLAD). As regards novel optical properties, we discuss as an example, finite size photonic crystal cavity structures formed from such nanostructure arrays possessing highQand small mode volume, and being ideal for developing future nanolasers
    • 

    corecore